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ABSTRACT
The computing industry accounts for 2% of the world’s emissions.

Power-efficient computing is a frequent topic of research, but saving

power does not always save the environment. Jevons’ paradox states

that resource savings from increases in efficiency will be more than

compensated for by increased demand by a process called rebound
— making these ineffective ways to decrease emissions.

This is not the case for all applications within computing: applica-

tions whose demand is inelastic with respect to power consumption

can have reduced power consumption. We analyze several large

fields within computer science, including ML, the Internet and IoT,

and provide directions on where power efficiency savings will help

reduce carbon emissions.

We present the economic tools needed to decide whether power-

efficiency improvements are likely to result in reduced or increased

emissions. We conclude that many problems in computer science

do have characteristics of rebound, meaning that green energy is

the only solution for many fields.
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1 INTRODUCTION
The climate breakdown is increasingly causing heatwaves, droughts

and floods and causing food and water insecurity for millions [6].

The computing-industry plays a non-insignificant part in this role,

contributing 4% of the world’s electricity consumption and 2% of

the world’s carbon emissions [23]. These emissions are forecast to

continue increasing [2]: understanding the tends that define these

emissions is critical to effectively combating them.

Power efficiency is considered a key metric of sustainability

within datacenters [21], networks [32, 50], IoT [49] and other sys-

tems. Nearing 80 years of computing research, energy-efficiency

gains have paradoxically resulted in increased power consumption

and environmental impact and are forecast to continue to do so in

many cases [48]. Numerous energy-saving strategies have been de-

vised [10], yet to transform these into impact on carbon footprint,
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they need to be targeted appropriately; without understanding

when these techniques actually help the environment, they come

across as greenwashing at best [3–5, 39].

These energy-saving techniques involve process-scheduling (e.g. [22]),

more efficient use of hardware (e.g. [24]) and other system improve-

ments (e.g. [38]). While these energy-saving techniques have been

effective in reducing costs, they have largely not been effective in

reducing the carbon footprint of computing. The rebound effect

where increased demand offsets reduced prices is responsible for

this, and overcoming it is one of the five biggest challenges in green

computing [30].

This paper covers the economic framework used to frame the

problem of rebound, which provides a basis to classify problems as

elastic and inelastic and enables determination of direct rebound

effects. We cover the limitations of this approach, and discuss indi-

rect rebound effects and how to reason about those. We reach the

following conclusions:

• Direct rebound is present in many of the most important

applications in computing, but may be mitigated in some

cases by monopolies.

• Using green energy is critical.

• Computing has potential for significant positive indirect

rebound effects due to the replacement of more carbon-

intensive activities.

2 DEFINITIONS
Global warming is truly a political problem. This does not mean

that technology improvements do not play a role, but technology

improvements often do not result in a reduction in emissions due

to market behaviours. Economics is a critical tool to understand the

impact of technology improvements on carbon emissions. There

are several key terms to define in the context of computing:

Price Price refers to the cost of purchasing some product. We refer

to price as 𝑃 and change in price as Δ𝑃 .
Demand Demand refers to number of purchasers for a particular

product (e.g. a laptop), or compute power (e.g. in AWS). We

refer to demand as 𝑄 below and change in demand as Δ𝑄 .
Rebound If some computation task is made more efficient, the

energy required to perform it decreases, which reduces the

price by some Δ𝑃 . However, the act of it becoming cheaper

makes it useful in more cases, increasing the number of

uses by some Δ𝑄 . As per [12], we have a rebound of 𝑍%

if 𝑍% of the savings from the energy-saving technique are

consumed by increased demand. 100% rebound means that

the efficiency improvement had no effect, and greater than

https://doi.org/10.1145/3604930.3605719
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Figure 1: How products with different elasticities respond
differently as costs of running change. Δ𝑃% and Δ𝑄% refer
to the percentage change in price and percentage change in
demand respectively. The coefficient of elasticity is the ratio
between these two, defined as: 𝜖 = (Δ𝑄/𝑄)/(Δ𝑃/𝑃). When we
have inelastic behaviour, the coefficient of elasticity is less
than one, and when we have elastic behaviour the coefficient
of elasticity is greater than one.

that means the efficiency improvement had negative impact

on total energy consumption.

Coefficient of Elasticity The coefficient of elasticity is a way of

measuring how demand changes with price. It is defined as

𝜖 = (Δ𝑄/𝑄)/(Δ𝑃/𝑃) where 𝑃 is price and 𝑄 is the quantity

demanded.

Elastic Demand Elastic demand refers to demand that is highly

sensitive to price changes: if a product’s price reduces, the

demand for that product will increase proportionately more

than the price. In these cases, we have 𝜖 > 1. The “Elastic”

line on figure 1 shows how price and quantity consumed

vary in elastic goods: we can see that a small drop in price

produces a large increase in total quantity consumed.

Inelastic Demand Inelastic demand refers to demand that is in-

sensitive to price changes: if a product’s price reduces, the

demand for that product will increase proportionately less

than the price. In these cases we have 𝜖 < 1. The “Very Inelas-

tic” line on figure 1 shows how price and quantity consumed

vary in inelastic goods: we can see that a large drop in price

produces a modest increase in total quantity consumed.

Utility Utility refers to the “usefulness” of a product in an abstract

manner. The usefulness may be different for different parties,

but largely, increasing utility without increasing price will

mean more demand.

Figure 2 shows an example of rebound—despite power-efficiency

of individual transistors increasing by a factor of approximately

16 over the period of 2000–2005, the total power consumption of

servers increased by a factor of 260%. Of course, not all of the

growth was driven by increased power-efficiency of transistors, but

Dennard scaling and Moore’s law have underpinned a large part of

the historic growth of the computer industry.
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Figure 2: The power consumption of servers worldwide [37]
plotted against Dennard scaling in the same window. The
energy-efficiency improvements from the Dennard scaling
have rebounded in the server market over the period of 2000–
2005, with an increase in power consumption of servers of
2.6x, giving us a rebound of 260%. The effects of Dennard scal-
ing are estimated using TSMC’s leading-edge process nodes
throughout the period of 2000–2005 and are normalized to
2000 levels.

3 DEMAND IN COMPUTING
Demand is typically measured with respect to cost. Reducing power

consumption has an effect on cost, but it does not completely control

the cost. This section explores how demand changes with in cases

where power-consumption is not a significant cost, and also in cases

where reductions in cost might not be passed on to the consumer.

3.1 Monopolies: Reductions in Cost vs
Reductions in Price

In monopolistic markets, power-saving techniques may not result

in a cost reduction for the end-user, meaning that the effect on the

demand that we have discussed may not occur. The development

of a power-saving technique that reduces the cost of providing a

service does not need to be passed onto the consumer as there is

no market to force the price down. In this case, monopolies may

keep the prices they charge the same, despite their expenditures

reducing.

In a non-monopolistic market, if a power/cost-saving technique

is developed, the market will force the competing companies to

lower their prices to account for these reduced costs of providing

the service. This provides the basis for rebound: the lower prices

enable consumers to consume more to make up for the reduction

in prices.

Due to the low-cost to entry of software, true monopolies are

rare in computing. However, near-monopolies are exceedingly fre-

quent [26]. This is apparent with recent start-ups, where huge

amounts of funding has been made available with the only aim be-

ing to grow user-bases and to make money from them later. These

industries provide good opportunities to reduce carbon footprints,

as they are unlikely to lose users to competitors, and will be eager

to reduce costs without needing to pass those onto consumers.
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Demand Type Power-Independent?

Power Savings ->

Reduced Carbon Footprint?

A Elastic Demand No No

B Elastic Demand Yes Yes

C Inelastic Demand No Yes

D Inelastic Demand Yes Yes

Table 1: A table for classifying whether power-saving tech-
niques will result in reduced energy use. The extent to which
power-savings result in emissions reductions depends on the
coefficient of elasticity and is covered in section 5.1.

3.2 Power-Independent Products
Typical definitions of rebound work with price changes, and in

many products, power does not make up a significant fraction of

the cost. We term these products Power-Independent Products which
have the following properties:

(1) Utility of the product is not limited by compute power.

(2) Power is not a significant cost.

3.2.1 Elastic Demand. Typically, elastic demand would mean that

power-saving techniques are ineffective at reducing carbon foot-

prints. However, if a product has power-independent performance,

power-saving techqnies have no impact on the consumer. In these

cases, even though a product can be elastic, it will not be elastic with

respect to power consumption, making power-saving techniques

effective.

3.2.2 Motivating Change with Power-Independent Products. Moti-

vating change in these fields is challenging: those responsible for

power-efficiency in such cases have little-to-no incentive to make

their devices more power-efficient. This is not to say that the costs

are irrelevant to the environment [49].

In other areas, green certification has been an important way

to address this problem. The Energy Star program (discussed be-

low) has worked well for home-related energy efficiencies. Similar,

trustworthy green certifications are needed for fields where power

consumption is a low cost.

There are a number of existing schemes. The Energy STAR pro-

gram was a consumer-visible label that indicates a threshold of

energy-efficiency, estimated to reduce the EU’s power consump-

tion by 0.4% [2]. The BlueAngel scheme targeted at datacenters is

similar, although it is significantly less-effective [2, 31] in part due

to poor choice of metric and in part due to the costs of installing

measurement equipment. Significant lessons on the design of such

schemes are presented by the European Commission in [2].

3.2.3 Taxonomy of Elasticities for Power Consumption. Table 1

shows how different types of application respond to power-saving

techniques. Inelastic applications are the best target for power-

saving techniques, along with power-independent products. The

magnitude to which carbon savings are possible depends on the

value of the coefficient of elasticity, and equations to calculate this

are provided in section 5.1.

4 CASE STUDIES
In this section we will review several different case studies. We

should note that predicting elasticity into the future of a particular

problem is, at best, an informed guess. Instead of promising that

these applications will always stay elastic/inelastic as described, we

will look at current predictions where they are available and recent

data where they are not.

For any of the below examples, new innovations (or stalled in-

novations) may change how demand may shift with increased

performance.

4.1 A: A Case Study of Elastic Demand: Machine
Learning

Machine learning models have exploded in size, with the largest

models costing millions of dollars to train [27], much of this spent

on power consumption. Clearly, the demand for more efficient ML

hardware is there [18], but as training becomes more efficient, the

models trained have wider applicability, meaning they are more

valuable, increasing the value of training them, and therefore the

money that will be spent on it and the carbon footprint.

For example, Google reports a 2.7x performance improvement

per Watt of their latest generation TPU v4 over its predecessor

TPU v3 [35]. At the same time, OpenAI increased the number of

parameters for its latest GPT-4 model by one order of magnitude [9]

— an indication that these power-efficiency improvements are not

resulting in power-savings.

4.2 A: A Case Study of Elastic Demand: Bitcoin
Bitcoin is a classic elastic computing application [33]. Over 80% of

the cost of bitcoin is the energy consumption [47], and there is an

obvious, direct benefit to making mining cheaper: profit margins

become bigger andmoremoney can be spent on growing themining

operation. Any power-saving techniquewill simply result in a larger

ASIC-cloud [36] for bitcoin mining.

In these cases, there are only two ways forward. The first is gov-

ernment regulation to increase the cost of energy to reflect the cost

to society. It is important to note that under these circumstances,

the rebound effect is increased [14]
1
. The second is to use renewable

energy. Already, approximately 30% of bitcoin’s energy comes from

renewable sources [47].

However, in summary, for truly elastic applications, the only

ways forward are legislation to reduce their negative impacts on

the environment or to encourage more use of renewable energy.

4.3 C: A Case Study of Inelastic Demand
Business compute is a good example of inelastic demand. For many

businesses, compute performs required tasks (e.g. providing all

employees with laptops), and the performance and cost of the in-

dividual computers is small with respect to the overall operating

costs. Further, provisioning of such compute is often complex and

operates on fixed schedules (e.g. replacing all laptops every X years).

Various works have inspected elasticities in business computing.

Jiang et al. [34] conclude that purchases of computers by businesses

1
The overall price might be increased by increases in the cost of energy, but in a case

where the cost is already increased, an energy-saving technique reduces the price

more, resulting in more rebound.
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are very inelastic (with a coefficient of 0.51)
2
and other studies have

reached similar conclusions [45]. Analysis of consumer purchases

of laptops shows that elasticity falls with laptop age [43] (the logic

being that new laptops are luxury items, while those purchasing

laptops that are no longer cutting-edge are more likely to do so out

of necessity).

4.3.1 Caveats of Inelastic Demand. Particularly in computing, in-

elastic demand evolves through time with innovations. The core

challenge to overcome here is that a field that was previously inelas-

tic may become elastic with a new innovation. Even in the business

example inspected above, estimates of inelasticity either require

short timeframes (as in [34]) or account for the complex patterns

of growth computing usage (as in [45]).

4.4 B: A Case Study in Elastic
Power-Independent Products

The Internet is a classic study of rebound: traffic has tradition-

ally grown with capacity [17] and internet-access plans are highly

elastic [11]. However, the costs of running the internet are not dom-

inated by power consumption as much as they are by the challenges

of maintaining a large network that is robust to traffic bursts, buggy

components and natural disasters. An example of this is in Telecom

Italia, which was reported in 2018 to need more than 2TWh of

electricity to run, nearly: 1% of Italy’s national energy demand [13].

Given the costs of electricity in Italy, and the reported turnover of

Telecom Italia, this is approximately 5% of expenditures, far from

dominating the costs despite playing a non-insignificant role on a

national scale.

The result is that although power-efficiency is a relevant metric

to the capacity of the Internet, it is not a defining metric. An exam-

ple of this can be in AT&T, one of the largest telcos in the world.

Over the time-period of 2018–2022, AT&T’s power consumption

decreased by 14% [7], despite an increase in traffic by a factor of

two [8].

This situation corresponds well to a classic example of inelastic-

ity: the effect of fuel-efficiency in cars in enabling more driving. The

effect of increased fuel-efficiency has not been a dramatic increase

in driving [42] as other factors, such as the time-cost of driving are

much more limiting [44].

4.5 D: A Case Study in Inelastic
Power-Independent Products

The Internet-of-Things (IoT) is an excellent example of a field where

power consumption is not a relevant cost to the producer. IoT de-

vices are sold to consumers, who pay for the electricity costs, but

while this energy consumption adds up on a larger scale [49], for

each individual consumer the power consumption is not likely to

be very significant.

Power-saving techniques directed at IoT devices are likely to

be highly effective, as consumsers are unlikely to purchase more

IoT devices due to lower power consumption (e.g. smart doorbells).

2
Jiang et al. [34] do conclude that cloud computing is moderately elastic — a conclusion

backed up by studies on the rebound of cloud computing environments [41], which

has significantly reduced costs over traditional enterprise computing [1].

Note that this differs from a business use case: businesses tend to

be much better at accounting for the lifetime costs of a product.

Again, this case of inelasticity has a corresponding area within

economics. Studies of efficient LED lighbulbs show very little re-

bound effect within consumer behaviour [40].

5 TOOLS TO IDENTIFY THE ELASTICITY OF
PROBLEMS

Inelastic problems are characterized by several key features. For

example, a third factor can dominate the uptake rate of a product.

An example of this is speed cameras, whose installation is typically

limited by politics rather than the direct cost of installing or running

the cameras.

The largest category of inelastic goods are those that are consid-

ered necessities. Mobile phones are increasingly becoming necessi-

ties, and so are inelastic in the sense that making them cheaper will

not significantly increase the number purchased (in rich countries).

5.1 Empirically Determining Rebound

𝜖 =
Δ𝑄/𝑄
Δ𝑃/𝑃 (1)

Where 𝑄 is the demand, 𝑃 is the in price and Δ𝑄,Δ𝑃 are their

changes respectively. This equation holds for either linear price/demand

or for small Δ𝑃 . Using this equation, we calculate the coefficient

of elasticity, 𝜖 . 𝜖 < 1 means that the product is inelastic, and 𝜖 > 1

means that the product is elastic and so susceptible to rebound.

5.1.1 When Does Saving Power Reduce Power Demand. Given a

product with a particular coefficient of elasticity 𝜖𝑝 , and an energy-

efficiency technique that reduces the power consumption of this

product by a factor of 𝑒 ≤ 1.0 so that 𝑒 = 1 means that power con-

sumption has been eliminated, we can analytically decide whether

this innovation will result in overall reduced carbon emissions.

We also define 𝐼 , the fraction of the cost that comes from power-

consumption as:

𝐼 =
𝜓𝑃

𝜓𝑃 + 𝜙𝑃

Where𝜓𝑃 is the cost of power and 𝜙𝑃 is the non-power cost.

Δ𝑃 and 𝑒 are related by the equation:

Δ𝑃 = 𝑒 × 𝑃 × 𝐼

Using equation 1 we can write:

Δ𝑄 = 𝜖𝑝 (Δ𝑃/𝑃)𝑄
= 𝜖𝑝 × 𝑒 × 𝐼 ×𝑄 (2)

To compute the environmental impact of this change, we should

consider the embodied emissions, 𝜙𝐸 and the power-consumption

emissions𝜓𝐸 per unit of consumption of the original product. The

change in emissions is given by:

Δ𝑄 (𝜙 + (1 − 𝑒)𝜓 ) −𝑄𝜓𝑒

Which we can rewrite using equation 2 to get a change in emissions

of:

𝜖𝑝 × 𝑒 × 𝐼 ×𝑄 (𝜙𝐸 + (1 − 𝑒)𝜓𝐸 )︸                                   ︷︷                                   ︸
Rebound

− 𝑄𝜓𝐸𝑒︸︷︷︸
Direct Improvement
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5.1.2 Non-Linear Demand. For large price changes, linear demand

often does not make sense. The definition of elasiticity in equation 1

still holds, but 𝜖 , the elasticity, will vary with Δ𝑃 . This means that

we must find other ways of estimating 𝜖 when the price change is

significantly different than what we have data for. In general, we

can treat 𝜖 as a function of the new and old prices:

𝜖𝑝 (𝑃, 𝑃 − Δ𝑃) × 𝑒 × 𝐼 ×𝑄 (𝜙𝐸 + (1 − 𝑒)𝜓𝐸 )︸                                                   ︷︷                                                   ︸
Rebound

− 𝑄𝜓𝐸𝑒︸︷︷︸
Direct Improvement

5.2 The Limits of Projecting Elasticities
There are several key limits to understand when projecting elas-

ticities using equations. First, when price changes are large, the

potential for a particular technology to be used changes signifi-

cantly. This is a reflection on the gradient of the price/demand

graph being taken at a single point for these equations.

As prices change significantly, gradients on the price/demand

graph are likely to change significantly as entire new usecases are

opened and demand for existing usecases is saturated. Despite these

limitations, the equations presented above can provide an educated

guess as to what the rebound will be.

6 INDIRECT REBOUND
The wider challenges of addressing this consumption-based en-

vironment is one of the biggest challenges in addressing climate

change, and is not the focus of this article, which seeks to explain

how we can reduce the footprint of the computing industry in

particular, and when we might be inadvertently increasing that

footprint.

The indirect rebound effect is where money that is being saved

on computing due to a decrease in price is spent on other, emitting,

items. For example, If a typical home saves a small amount of money

every year on power consumption due to more efficient IoT devices,

that money will be spent somewhere else: perhaps on flying. This

indirect rebound effect has been estimated at approximately 10–

15% [16].

The other key element of indirect rebound effect is the substitu-
tion effect, where price changes drive consumers to substitute one

good with another. We will discuss this further in section 6.3.

6.1 Rebound in the Long Term
The rebound effect also refers to long-term effects of wider inno-

vations. However, many long-term innovations are impossible to

predict (almost by definition of innovation). For example, the coal

that Jevons saw rebound effects in was replaced by gas, petrol and

diesel with various further innovations.

The same applies in computer science: while we can reliably

assume that machine-learning will continue to use every watt avail-

able to it, systematic reductions in the per-use cost of IoT that

do result in reduced power consumption may suddenly open an

entirely new usecase that we cannot (yet) foresee.

6.2 Is Rebound Overrated?
We do not set out to argue that energy-efficiency improvements are

bad. There are many benefits to increasing power-efficiency, from

increased computing power to solving new problems — including

using computers to reduce the carbon footprint of other tasks [20].

In this sense, rebound is overrated: in many cases, the indirect

effects are more important than the direct power-consumption

effects.

6.3 The substitution effect: Is Rebound Good?
There is a strong argument to be made that computing is one

of the greenest industries. Money spent in virtual spaces (e.g. on

video games) has virtually zero physical resource usage, especially

when compared to alternative spaces where individuals spend their

money.

The substitution effect plays a key role in this: when power-

efficiency developments enable computers to take over a new chunk

of consumer spending that was previously being spent on more

polluting industries, the effects are good.

Further, although increasing power consumption may well be

a problem, computers have a clear path to being turned green.

Because we are considering an industry largely driven by electricity,

the transition to renewable energy is relatively simple.

6.4 Embodied Carbon and Related Emissions
For many devices, particularly those with large batteries or screens

that are not always on (e.g. phones, personal computers), embodied

carbon is more important the the power usage while running the

device [15, 19, 46].

The same lessons we have applied here can be applied to these

cases, although some nuances apply:

• A frequent businessmodel is one of ethical production, where

increased costs are charged with consumers being promised

devices that have lower environmental footprints
3
.

• Many of the environmental impacts embodied into devices

are not just the carbon, but other precious metals such as

gold and copper [29].

6.4.1 Disposal Charges. Computers contain rare metals, some of

which are worth recycling [28]. However, many of the components

within typical computer design are not worth the cost of recycling.

Disposal charges have been introduced for other items such as bot-

tles and have been used to set recycling targets for computers [25].

These charges have a similar impact to a carbon tax: they increase

the cost of doing things that are damaging to the environment. The

result is that techniques that reduce the carbon footprint are even

more susceptible to rebound.

7 CONCLUSION
Understanding the potential for rebound is critical in understanding

the potential of power saving techniques to save the planet. In this

paper, we present economic models for understanding rebound

effect, and present argument that in many sub-fields of computer

science, rebound is unavoidable. We come to two key conclusions:

that green energy is critical in reducing the carbon footprint of

the computer industry, and that ensuring that when power-saving

techniques are developed, that they are applied to fields where they

may not directly be profitable.

3
e.g. fairphone.com

fairphone.com


HotCarbon ’23, July 9, 2023, Boston, MA, USA Jackson Woodruff, David Schall, Michael F.P. O’Boyle, and Christopher Woodruff

The unfortunate reality for computing is that energy-efficiency

gains are likely to result in rebound for many fields, and the growing

nature of the discipline means that fields that do not show rebound

are unlikely to constitute a significant part of computing’s power

consumption for very long.

On the positive side, sustainable electricity generation promises

to solve many of the emissions problems in computing, and in this

regard, some of the rebound face in computing is good. Digital
markets are detached from physical resources in a way that makes

it possible to achieve growth without many of the environmental

concerns that come from physical products.
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