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Regular expressions have applications in fields from net-
work intrusion detection to bioinformatics. This has led to
the wide-spread development of FPGA-based hardware ac-
celerators. However, reprogramming these accelerators for
different regular expressions is slow and difficult due to
FPGA toolchain overheads. Translation overlays that enable
fast repurposing of existing accelerator layouts have been
proposed. However, these assume the underlying accelerator
design exists and is well-designed. For many domains, this
is impossible to do by-hand: requiring simple patterns and
significant programmer effort.

We present Secco, a compiler targeting symbol-only
reconfigurable architectures, which codesigns the (fast-
reconfigured) translation overlay and the (slow-reconfigured)
underlying accelerator layout, by reusing the same hardware
when simple overlay translations are available, and generating
new hardware otherwise. This allows significant efficiency
improvements: Secco enables 5.9x more expressions using the
same resources across all ANMLZoo benchmarks compared
to regular expression tool chains like REAPR. This enables
large numbers of diverse regular expressions to be accelerated
with context-switching overheads in the milliseconds.

Index Terms—regex, hardware accelerator, compiler

I. INTRODUCTION

Regular expressions are central to a number of fields,
from verification [1] to bioinformatics to network intrusion
detection [2]. Finding faster, more scalable and more energy
efficient accelerators for regular expressions has been an
active area [3]. FPGA accelerators provide a significantly
more energy-efficient way to accelerate regular expressions
compared with CPU-based alternatives such as Hyperscan [4],
by taking advantage of the MISD nature of the task. However,
FPGAs have limited space, with small FPGAs incapable of
accelerating the thousands of regular expression patterns found
in network intrusion detection rulesets such as Snort [5].

Reconfiguration allows more regular expressions to be
considered at the cost of run-time overhead, but fully re-
programming FPGAs at run-time is typically infeasibly slow,
and synthesising all configurations even slower [6]. Partial
reconfiguration leveraging the similarity between different ex-
pressions for the same task by generating translation overlays
can address this problem. This symbol-only-reconfiguration [6]
has previously been used to enable fast partial reconfiguration
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of a REAPR [7] regular expression accelerator. It enables
near-zero-overhead reprogrammability for regular-expression
accelerators, given a suitably generic base accelerator. These
techniques are not limited to FPGAs — Micron’s Automata
Processor implements a similar technique called Symbol Re-
placement [8] to overcome the high latency of reconfiguration.

Currently, however, such translation-overlay architectures
lack automation. They require generic base accelerators and
overlay configurations to be designed by-hand. This is already
a challenging task for domains with simple, repetitive, acceler-
ator structures [6] but is impossible for domains with millions
of unique patterns such as bioinformatics applications.

Other overlays such as stateless translation [9] have compil-
ers that can target arbitrary underlying accelerators, but these
are significantly less powerful than symbol-only reconfigura-
tion. They require the use of a CPU to check matches, harming
scalability, and have more rigid similarity constraints on trans-
lations, harming compression rates. We show that symbol-
only reconfiguration can enable 5.9x more expressions, a
3.4x improvement in expression density compared with the
state-of-the-art [9]. Further, existing compilers for stateless
translators can only target pre-designed accelerators, rather
than choosing, configuring and co-optimising the accelerator.

In this work, we present Secco (Structural Expression Code-
sign Compiler), a compiler capable of taking a large ruleset
with many regular expressions, and producing base acceler-
ators and reconfiguration sets to be used in a symbol-only-
reconfiguration architecture. We build upon the infrastructure
in RXPSC [9], a compiler that enables multiple regular expres-
sions to share the same accelerator using stateless translation,
to design new mechanisms to automatically compile symbol-
only reconfiguration [6] translation layers instead. We also
provide a new backend for RXPSC that can generate new
accelerators rather than just being provided them as input,
allowing Secco to codesign the translation overlay with the
accelerator for both stateless translation and symbol-only
reconfiguration.

We demonstrate the applicability of our compiler across
the regex benchmarks in ANMLZoo [2] and provide an in-
depth analysis of a bioinformatics use case, showing that
we can represent 5.9× more regular expressions than are
possible with a basic REAPR accelerator, and 3.4× more
than competing compression techniques [9]. This compression
is vital both to minimise the area of the accelerator while
maximising coverage, and as a proxy measure for how Secco
can successfully generate generic, reusable accelerator logic.



We make the following contributions:
• We present a novel compilation technique targeting

symbol-only reconfigurable architectures.
• We develop a method for co-design of generic symbol-

only reconfigurable hardware accelerators and stateless
translation accelerators from sets of regular expressions.

• We demonstrate that there are sufficient patterns in exist-
ing rulesets to be exploited with symbol-only reconfigu-
ration architectures.

II. MOTIVATION

Secco introduces a co-design framework: enabling auto-
mated design and reconfiguration of symbol-only reconfig-
urable accelerators. The size, and number of, regular expres-
sion accelerators dictates the resources required on an FPGA,
and the number of resources consumed dictates the number
of expressions that can be accelerated. In this section we
describe how existing partial reconfiguration approaches work
and how symbol-only reconfiguration is more effective for
regular expression pattern matching.

A. Regular Expressions for Network Intrusion Detection

Regular expressions are a well-known way of representing
text-matching patterns. They are constructed from a series of
characters, with operators like * to represent zero or more
and | to represent either or. For example, the expression
ab*(c|d) matches strings ac, abbc, abbd etc.

B. Existing Approaches

Two key approaches to resource sharing for regular expres-
sions exist, prefix merging, in which expressions with identical
prefixes are merged and stateless translation, in which an
overlay is introduced allowing different expressions to use the
same accelerator.

1) Prefix Merging: Prefix merging [2] is a technique where
expressions that share prefixes share accelerator resources. For
example, the two expressions ab* and ac* share a common
prefix, a.

Prefix-merging techniques are limited by their requirements
for exact equality of prefixes. For example although the
expressions ab* and cd* share significant similarity, they
cannot share resources using prefix merging.

2) Stateless Translators: Stateless translators [9] are a state
of the art approach that can automatically run regular ex-
pressions on accelerators for different expressions. In stateless
translation, a symbol lookup implemented as a BRAM is used
to translate the character input stream character-by-character.
Figure 3a shows this architecture. This allows two different
expressions to share much of the same underlying hardware.
While stateless translation can handle more cases than prefix
merging, it is still limited. For example, the expression aa*
cannot use an accelerator for ab*, as this would require
translation of a to both a and b.

C. Symbol-Only Reconfiguration

Symbol-only reconfiguration is a technique where edges
within a non-deterministic finite automata (NFA) are repro-
grammed to support different symbols, introduced by Bo [6].
This enables fast reprogramming of regular expression ac-
celerators, and is supported by FPGA accelerators [6] and
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Fig. 1: Expressions (from table I) merged to share an accel-
erator using symbol-only reconfiguration.
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TABLE I: Two rules from the Snort ruleset.

ASICs [10]. Figure 3b shows an FPGA-based symbol-only
reconfigurable design.

Symbol-only reconfiguration offers more power than state-
less translation. A stateless translator cannot accelerate aa*
using an accelerator for ab* as it involves a symbol clash
(where a must be translated to a, and also to b). In contrast,
symbol-only reconfiguration enables reprogramming at a finer-
grained level, allowing a mapping to a at the first symbol and
a mapping to b in the second symbol.

Architectures that implement this style of reconfigurability
typically compile expressions to homogeneous NFAs, which
are NFAs where every edge into a node has the same symbol.
This allows state-activation checks to be simplified, and de-
couples the structure of the NFA from the symbols, enabling
such symbol-only reconfiguration.

D. Example

Figure 2 shows how Secco generates generic expression
accelerators that can be quickly updated.

On the left, we see prefix merging and stateless translation
reducing the resources required by an accelerator for both
input expressions, a(b|c) and a(d|e). On the right, the
regular expressions show less similarity. As there is no com-
mon prefix between the expressions a(a|b) and d(e|f),
prefix merging can’t operate. Similarly, the expressions are not
compatible with symbol only reconfiguration, as a cannot be
translated to both d and e. Using symbol-only reconfiguration,
Secco generates a relabelling so that a(a|b) and d(e|f)
can be multiplexed onto a single accelerator.

For a concrete example (Table I) we use the Snort rule-
set [5], an open-source set of rules developed to enable
network intrusion detection.

Although these rules appear visibly different, we can design
a common accelerator that supports both using symbol-only
reconfiguration to enable the accelerator to run either pattern
(e.g. Figure 1). In this case, this is particularly useful as the
first expression is intended to be run on UDP packets into
port 554, while the second is intended to run on TCP packets
into port 80. Rule compression is particularly relevant for
embedded targets, which benefit from low-power FPGA-based
scanning and do not have the resources required to run the full
ruleset on-device.

Given a set of such regular expressions Secco builds a set
of accelerators by merging expressions with similar structures.
For example, given a, bc* and d|e, Secco first merges a and
bc* to create an accelerator for ac* — this can be configured
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Fig. 2: Expressions can share accelerators using prefix merging and symbol-only reconfiguration techniques. Provided
expressions do not have to run simultaneously, symbol-only reconfiguration techniques can merge many more accelerators
than either prefix-merging or stateless translation techniques.
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(a) The architecture of stateless translators [9]. Lightweight repro-
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(b) A symbol-only reconfigurable architecture [6]. One state transi-
tion element (STE) is used for each state in the compiled NFA. The
STE is active if any of the incoming edges are active, and the input
symbol activates the state.

Fig. 3: Stateless translators [9] use a BRAM lookup table to
translate all occurrences of a given symbol into another, to
reuse accelerators. Symbol-only reconfiguration [6] is more
general, as each State Transition Element can be repro-
grammed to map to any chosen character.

to either a or bc*. Secco then explores the expression d|e
to create an accelerator for the expression a(c*|e). This
process of building accelerators continues as long as more
expressions need accelerators.

III. IMPLEMENTATION

Secco introduces a greedy algorithm for synthesising
generic sets of accelerators that support many expressions
(section III-A). We introduce a novel unification algorithm
for merging similar accelerators (section III-B). Secco sup-
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Fig. 4: Secco constructs a set of accelerators by greedily
iterating through its input expressions, attempting to match
the current input expression to each accelerator in turn with
symbol-only reconfiguration and light modification of the
accelerator up to a threshold. If this fails, then the same modi-
fication is attempted on the next accelerator. If no accelerators
can be converted, a new one is added to the set.

ports two different architectures: stateless translation [9] and
symbol-only reconfiguration [6].

A. A Greedy Approach to Merging Accelerators

Rulesets may have thousands to millions of expressions.
Given a set of expressions to accelerate, we iterate through
the expressions, creating a set of accelerators.

For each new expression, the set of existing accelerators
is inspected, and we apply algorithm 1 to obtain a number
of possible accelerators and mappings. To do this, both the
existing accelerators and new expression are converted into
accepting-path algebras (see section III-B1) We choose the
accelerator that requires the fewest modifications. If the cost
of mapping this expression to the accelerator is too high (i.e. it
requires too many modifications), we try the next accelerator
in the set. If no current accelerator can be modified with
below-threshold changes, then a new accelerator is added. This
algorithm is shown in figure 4.

To use our greedy algorithm, we require a pairwise algo-
rithm that can produce single accelerators that can be shared
by two expressions. The pairwise algorithm modifies the
accelerator in a way that preserves the behavior of previous
configurations and produces a configuration that can be used
to configure the accelerator for the regular expression.



B. Compiling Between Regular Expressions

We develop an algorithm that abstracts symbols from reg-
ular expressions (and regular expression accelerators), and
matches the underlying structures to each other. We build on
the accepting-path algebra from [9].

1) Accepting-Path Algebra: The accepting-path algebra is
an abstract representation of regular expressions where sym-
bols are abstracted away and expressions are represented only
by their structure.

There are a number of terms in the accepting-path algebra.
We use t to refer to sub-terms:
n This refers to a sequence of n consecutive characters. E.g.,

the expression abc has accepting-path algebra 3.
a This refers to an accepting position within the expression.
e This refers to the end of an expression.
t1, . . . , tn This represents a number of options, of which any

can be taken.
t∗ This means that t may repeat zero or more times.
t1 + t2 Represents t1 followed by t2. For example, we could

write the algebra for ab as 1 + 1

2) Structural Compilation Algorithm: To compile for
symbol-only reconfigurable architectures, we define a unifica-
tion function ↔ on algebras that merges two algebras provided
that there is sufficient similarity.

Algorithm 1 shows this unification, via pattern matching.
This algorithm is exponential, in-particular the SumEq and
BranchEq cases. We use a greedy strategy with cut-offs that
control the maximum exploration depth for either of these
cases to achieve reasonable performance. An example applica-
tion of this algorithm is shown in figure 5. The two patterns in
green can both be made compatible by deriving an underlying
accelerator in yellow, using symbol-only reconfiguration to
convert or disable symbols at run-time to switch between the
two configurations.

3) Generating Reconfiguration Sets:
a) Symbol-Only Reconfiguration: As discussed in sec-

tion III-C1 to introduce symbol-only reconfigurable sets, we
derive a mapping between characters. Each node in the algebra
corresponds to an edge in an underlying NFA. If terms are
connected to each other by a rule, then we set the edges
in the underlying NFA to the symbols in the expression that
correspond to that edge.

This architecture is more flexible than stateless translation
as it is not vulnerable to symbol conflicts (figure 2). As we
see in section IV, this alone accounts for a 3.4× smaller set
of accelerators.

b) Stateless Translation: Given a mapping, we can gen-
erate a stateless translation using the existing algorithm in [9].
For each symbol, we derive the set of terms it must activate to
preserve the accelerator’s behavior. We then unify these sets,
creating a single, consistent, translation table.

The produced compiler is limited by the power of the
stateless translators. As the size of an expression increases, the
likelyhood of a clash in a stateless translator also increases,
where one character must (impossibly) be translated to two
different characters to correctly unify the accelerator. How-
ever, this approach is implementation-independent, allowing
any accelerator design to be used.
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Fig. 5: An example compiling from expressions
a(b|cdef)(gh)*i and v(w|xy)z (in blue) to the
accepting path algebra (in green) and then a generic structure
(in yellow) capable of accelerating both using a symbol-only
reconfiguration.

Algorithm 1 The expression-merging algorithm, expressed
recursively using pattern matching. The input is two dif-
ferent accepting-path algebras where the first represents an
expression, and the second represents an accelerator, and the
output is a single accelerator that can run either pattern, and
a mapping for each accelerator. Some cases (e.g. the SumEq
case) result in more than one valid result, in which case the
merging with the fewest changes to the accelerator is selected.

function A ↔ B:
|<Pattern> : <Result> ▷ <RuleName>
| a ↔ a: a ▷ AcceptEq
| e ↔ e: e ▷ EndEq
| m ↔ m,m ∈ N: m ▷ ConstEq
| m+ x ↔ n+ y: ▷ AddBranch

(m ↔ n) + {x, y}
| x∗ ↔ y∗: (x ↔ y)∗ ▷ ProductEq
| x∗ ↔ y: x ∗+y ▷ AddProduct
| {x0, . . . , xn} ↔ {y0, . . . , ym}: ▷ BranchEq

A set K such that each element is either xi, yi or
(xi ↔ yj) and each xi and yi appears exactly once.

| x0 + · · ·+ xn ↔ y0 + · · ·+ yn′ : ▷ SumEq
A sequence s1 + · · · sm such that each si is some

xj+· · ·+xk ↔ yj′+· · ·+yk′ with monotonically increasing
j, k, j′, k′.

| Otherwise: Fail
end function

C. Overview of Target Architectures

Secco can target two different styles of regular-expression
overlay: stateless translators and symbol-only reconfigurable
architectures. For both, Secco generates two key components:
the accelerator structure (section III-A) and the reconfiguration
sets (section III-B3).

1) Symbol-only Reconfigurable Architectures: Symbol-
only reconfigurable architectures [6] enable expressions that
share the same structure to also share the same accelerator. To
compile a regular expression to a symbol-only reconfigurable
accelerator, we first apply the unification algorithm to the ex-
pression and the accelerator. This produces a set of mappings



between states in the accelerator and the expression — each
state in the accelerator should be programmed with the symbol
in the corresponding state in the expression.

2) Stateless Translation: Stateless translator architec-
tures [9] use a BRAM-based lookup table to translate each
input symbol one-by-one. To compile a regular expression to
a stateless translator we use the algorithm described in [9]. In
summary, the unified expressions produce a set of constraints
on which characters must be translated to which other char-
acters. These constraints either produce a stateless translator
that maps the expression, or fail if there are symbol clashes.

D. Simulator Backend

We also introduce a Python-based backend to RXPSC that
enables the creation of Python simulators for regular expres-
sions: as raw accelerators, with symbol-only reconfiguration
overlays and with stateless translation overlays. This enables
rapid development and debugging of unification algorithms.

IV. RESULTS

We evaluate Secco against another reconfigurable archi-
tecture that can support expression compression, stateless
translation. We compare these techniques to prefix merging, a
well-known way of enabling hardware sharing between regular
expressions.

A. Compression Results

In this section, we examine the ANMLZoo benchmark
suite [2], a regular expression benchmark suite covering varied
domains, from network intrusion detection to bioinformatics.
In-line with previous work [9], we assume that all expressions
can share hardware with all other expressions. This assumption
applies well to domains where a relatively small fraction of
the expressions must be run on each input (such as network in-
trusion detection). We compare against stateless translators [9]
using the same assumptions, although we note that stateless
translators do not fully accelerate patterns that they compress,
as they allow for approximation — depending on the field this
may require additional computation.

Figure 6 shows the reduction in the number of states that
Secco achieves. Stateless translation improves over prefix
merging in the resource sharing it enables, providing an
increase of 1.7× in the number of expressions that can
be represented with a fixed number of states. We can see
that symbol-only reconfiguration provides the most powerful
model of reconfiguration, increasing the number of expres-
sions that can be represented with a fixed number of states by
a factor of 5.9x.

Figure 7 shows the reduction in the number of expressions
that must be present on the accelerator to be able to run
any from the set. Stateless translation reduces the number of
regexes that must be implemented by 53% , while symbol-
only reconfiguration improves on this, reducing the number
of accelerators that must be implemented by a factor of 88%.

These factors are greater than the state reduction factors as
removing an accelerator often requires adding states to another
accelerator. We will explore this in section IV-B.
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Fig. 6: Reduction in the number of states that must be
implemented to support all expressions in a set (higher is
better). Secco compresses expressions 3.4x more efficiently
than stateless translation, which enables 5.9x more expressions
to fit.

Fig. 7: Reduction in the number of accelerators that must
be implemented to support all expressions in a set (higher
is better). As smaller accelerators are more likely to be
mergeable, the compression numbers using this metric are
higher than in figure 6.

B. Analysis of Accelerator Construction

a) Expressions per Accelerator: Figure 8 shows the
number of expressions that each implemented accelerator is
expected to support. We can see that the number of patterns
each accelerator is expected to support follows a power law
distribution, with few accelerators supporting many expres-
sions, and many accelerators only supporting a few expres-
sions. This is an artefact of our greedy algorithm, that tries to
add each new expression to the same accelerator. We can also
see discrepancies between different benchmarks depending
on the complexity of the expressions in the benchmark (e.g.
Protomata largely contains relatively simple expressions, so a
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Fig. 8: The number of expressions using each accelerator. The
power law-like distribution is a result of the greedy algorithm
we use to select which accelerators should be shared.
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Fig. 9: The number of additional states for each expression.
This graph shows that for most pairs of expressions, very few
states need to be added to merge them. However, in many
cases, many 10s of states do need to be added to the underlying
accelerators for each expression.

lot of sharing is possible).
b) States per Expression: Figure 9 shows the number

of additional states required when merging two expressions.
In general, the fewer additional states required the better. We
can see that the number of states added is highly benchmark
dependent. This reflects how good our unification algorithm is
at isolating differences between expressions and accelerators
and overcoming them. For example, our algorithm better
identifies these modifications in protomata than dotstar.

V. CONCLUSION

Secco enables compilation of sets of regular expressions to
specialized overlays. We demonstrate the application of our
algorithm to two existing FPGA overlays, stateless translation
and symbol-only-reconfiguration and show that the number of

regular expressions that can be supported with a fixed quantity
of resources increases by factors of 1.7× and 5.9x respectively
over prefix merging techniques. Our work introduces a generic
accelerator-merging algorithm that opens the design-space for
new designs of regular expression overlays.
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