
Jackson Cunningham Woodruff

An Optimising Compiler for ML
Computer Science Tripos: Part II

Magdalene College
May 2018

Proforma
Name: Jackson Cunningham Woodruff
College: Magdalene College
Project Title: An Optimising Compiler for ML
Examination: Computer Science Tripos - Part II, 2018
Word Count: 111721

Project Originator: Jackson Cunningham Woodruff
Supervisor: Dr Timothy Jones

Original Aims of the Project
The original aim of this project was to write an optimising compiler from

SML source code to Java bytecode. Various optimisations were to be explored
and compared in their effectiveness. The compiler was to be compared to
existing ML compilers. This dissertation explains the design process, the design
decisions made, and evaluates the final product.

Work Completed
I have implemented an optimising compiler from SML source to Java

bytecode. Optimisations implemented are: a peephole optimiser, a tree
simplifier, dead store elimination, copy propagation, constant propagation,
function inlining and tail-call elimination. A testsuite has been written and
maintained. A benchmarking suite has been constructed, and benchmarking
scripts written. The optimisations have been compared and their improvements
documented. Success criteria were met.

Special Difficulties
None.

Declaration of Originality
I, Jackson Cunningham Woodruff of Magdalene College, being a candidate

for Part II of the Computer Science Tripos, hereby declare that this dissertation
and the work described in it are my own work, unaided except as may be
specified below, and that the dissertation does not contain material that has
already been used to any substantial extent for a comparable purpose.

Signed
Jackson Woodruff

Date
May 13, 2018

1Computed with Turnitin software.

1

Contents

1 Introduction 4

2 Preparation 6
2.1 Source Language . 6
2.2 Target Language . 6
2.3 Selecting Optimisations . 7
2.4 Benchmarking . 8
2.5 Compilation Pipeline . 8
2.6 User Interaction . 9
2.7 Development Strategy . 10
2.8 Testability . 10
2.9 Selecting Tools . 10
2.10 Starting Point . 11

3 Implementation 12
3.1 Compiler Implementation Details 15

3.1.1 Verification . 15
3.1.2 Designing TIR . 16
3.1.3 Datatype Lifting . 17
3.1.4 Outlining . 17
3.1.5 Lambda Lifting . 19
3.1.6 Let Elimination . 20
3.1.7 Pattern Match Elimination 22
3.1.8 Variable Numbering . 23

3.2 Representing TIR with Bytecode 23
3.3 Optimisation Implementation Details 27

3.3.1 Tail-Call Elimination Pass 27
3.3.2 Function Inlining . 28
3.3.3 Copy Propagation Pass 29
3.3.4 Simplify Passes . 29
3.3.5 Dead Store Elimination Pass 31
3.3.6 Peephole Pass . 31
3.3.7 Phase Ordering Problem 33

3.4 Testsuite Implementation Details 36
3.5 Benchmarking Implementation Details 37
3.6 Standard Library Implementation Details 38

2

3.7 Compilation Scripts Implementation Details 38
3.8 Summary . 38

4 Evaluation 40
4.1 Methodology . 40
4.2 Execution Time . 40
4.3 Compile Time . 49

4.3.1 Typechecker . 49
4.4 Code Size . 56
4.5 Additional Optimisations . 59
4.6 Summary . 59

5 Conclusion 60
5.1 Further Work . 60
5.2 Summary . 61

Appendices 66

A Inlining Performance Profiling in Java 67

B Scala Garbage Collector 70

3

Chapter 1

Introduction

Compilers are a crucial tool in all software projects. Compilers must be correct,
and companies’ fortunes can depend on the speed of generated code. Free
compilers are critical for the success of small companies. My project aims to
provide a free SML compiler as another possible tool.

There are existing SML compilers, notably SML/NJ, MosML and PolyML.
These compilers all provide interactive sessions and compilation facilities. How-
ever, the compilation targets are non-portable machine code or obscure virtual
machines. These projects have too few contributors to maintain backends or vir-
tual machines for many targets. For example, SML/NJ does not support Arm
as a compilation target [1]. Many of these compilers do not produce machine-
independent executables, and so do not benefit from the “compile once, run
everywhere” philosophy of projects like the JVM. Further, the nature of na-
tive executables means that they do not benefit from a JIT making dynamic
optimisation decisions. A similar issue exists in that smaller virtual machines
do not have the same range of optimisations as the JVM. Speed of produced
executables is important for ML programs. For example, the HOL project, one
of the largest active SML projects, moved from MosML to PolyML largely due
to speed issues as discussed by Norrish [2]. Even with a JIT, compile-time
optimisations can be important, as discovered by the SOOT project [3].

Finally, each compiler has small incompatibilities with others in the imple-
mentation of the standard libraries. A program written for MosML may not
be compatible with PolyML. If one project stops supporting new architectures
— a situation that poses significant development costs, the task of migrating
a program written for one compiler to another may be non-trivial. A program
written for my compiler (MLC) will require that my project receives bug fixes,
but not that it adds new targets.

My project is aimed at the JVM. The JVM is a larger project than any
of the ML compilers, and it supports a vast range of targets. More targets
have support through alternate JVMs. The executables generated are machine-
independent and are optimised at runtime by the JIT with up-to-date techniques
on every run. For ML programs to take advantage of this, we needed ML-to-Java
bytecode compiler.

As discussed by Hughes [4], functional languages have benefits for certain

4

JVM Languages

Java Scala Kotlin

javac scalac kotlinc

The JVM

Other
Functional Languages

Haskell Standard ML

GHC SML/NJ MLC

x86 Arm Thumb Arm 64 Power PC

Figure 1.1: How my project (MLC) fits into current compiler infrastructure for
the JVM.

tasks. For example, they eliminate major sources of bugs. However, Java’s
prevalence in industry makes functional languages difficult to integrate with
existing projects. A compiler targeting the JVM can easily interoperate with
Java; this is considered a key feature for many JVM languages (e.g. Scala [5]).
Figure 1.1 shows how this project fits.

An SML-to-Java bytecode compiler already exists: MLj [6]. However, it is
no longer maintained. I was unable to compile MLj with my current version of
Ubuntu and SML/NJ. Further, MLj does not implement tail-call elimination,
which unnecessarily restricts the programmer to limited JVM stack size.

More competition is good for the free compiler market. For instance,
as a direct result of market pressure from LLVM [7], GCC has adopted
useful features such as better quality warnings. Likewise, a complete version
of this project would drive support from existing compilers for features that
are core to a complete version of this project (such as interoperability with Java).

My project implements a compiler that produces JVM bytecode from SML
source to resolve these issues. As a result of time constraints, the project is
not a complete language compiler and implements only a pure subset of SML.
However, my project has been designed with the entire language in mind. The
extensions enabling this can build on what has been implemented.

5

Chapter 2

Preparation

In this chapter, I discuss the selection of Standard ML as defined in “The Def-
inition of Standard ML” [8] as an input language, JVM bytecode as a target
language, and Scala as an implementation language. In addition, I discuss de-
cisions about tracking performance and testing MLC. Finally, the selection of
optimisations is discussed.

2.1 Source Language
Haskell was my original choice of language due to its popularity. However, I felt
that SML provided a better starting point due to my prior knowledge. Further,
the pure subset of SML I intend to compile is the same as that subset of Haskell
(and many other functional languages with pure subsets, such as OCaml). The
compromise was to plan the mid-end in a language-agnostic manner that easily
extends to languages such as Haskell.

SML is too large a language to compile for this project. I selected a pure
subset described in Figure 3.1 that provides expressivity without bloating any
passes of my compiler (e.g., lots of syntactic sugar would complicate the parser
in comparison to other stages).

Further, I intended for it to be possible to eventually add all omitted
features (from the core language defined in the definition [8]). Crucially, the
compilation techniques used must play well with omitted features. The most
notable omitted feature is references. The implementation has shown that
references would be a simple extension.

2.2 Target Language
Selecting the JVM was not particularly difficult given the limited options. Tar-
geting a particular architecture would be difficult due to time constraints and
the additional complexities of processes such as register allocation and conform-
ing with ABIs. I considered LLVM IR, but this does not have the desirable

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

Not Inlined
(MLC Style Call)

Not inlined
(Java Style Call)

Inlined

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

Expected Speedup From Inlining in Ideal Conditions

Not Inlined (MLC Style Call)
Not Inlined (Java Style Call)

Inlined

 0

 200

 400

 600

 800

 1000

 1200

 1400

Figure 2.1: Estimation of possible performance improvements for inlining on
the JVM. Method calls are made in a tight loop. Code for this is given in
Appendix A. Performance improvements of this magnitude are not expected in
real programs.

“single executable for all platforms” traits and is more complicated. Further,
LLVM has fewer supported architectures than Java bytecode.

I considered other JITed instruction formats such as Python’s pyc format
or Microsoft’s intermediate language MISL. However, none appeared to be as
documented or supported as Java bytecode. Further, many other languages
(notably Scala, Groovy and Kotlin) have used the JVM as a compilation target;
so, it is known to be feasible.

A further consideration in target selection is legal feasibility. The Java byte-
code specification is licensed under the Limited License Grant [9]. This pro-
vides the freedom for two critical aspects of this project: first, clause 1(i) allows
applications to be developed targeting an implementation of the specification.
Second, clause 1(ii) allows discussion of the specification with third parties;1
this clause is important for this document.

2.3 Selecting Optimisations
Two criteria were used to select optimisations: the first was to find optimisations
with expected impact on generated code speed. The second was to identify the
optimisations needed to clean up after previous passes.

Previous research has shown compile-time optimisations such as loop un-
rolling, loop unfolding and loop invariant code motion can provide large perfor-

1Provided large sections are not copied verbatim.

7

mance benefits [10]. SOOT (a Java bytecode optimiser) has recorded function
inlining yielding an 8% performance improvement [3]. I attempted to verify
this as this study was undertaken in 2002. As shown in Figure 2.1, I was able
to reproduce this performance increase with traditional Java methods. Using
functions in a similar style to my representation (discussed in Section 3.2), I
found significant performance gains. The inlining was performed manually in
the source, and compared to code without inlining.

With these data, I identified that function inlining, partial inlining of recur-
sive functions and tail-call optimisation were likely to be particularly profitable.

The selection of optimisations to clean up after compilation passes posed a
significant challenge. It proved difficult to predict which issues each compila-
tion stage would encounter. I approached this problem by selecting well-known
optimisations. For the most part, this worked well. Optimisation passes remove
most junk code generated by MLC.

2.4 Benchmarking
Performance tracking was detailed from the outset. Making informed decisions
about which optimisations are helpful and which are not requires data on their
effects. Some data can only be collected after an optimisation has been imple-
mented. These data have proven useful for inspecting why optimisations did or
did not work in certain cases.

I planned to track benchmark execution time and executable size. The Linux
utility perf [11] yields counts of specific events in the processor. I intended for
this to reveal detailed effects of optimisations on the microarchitecture.

My benchmarks were to be designed so that all represented different tasks
and performed real algorithms. It makes little practical sense to implement
a compiler that optimises only toy cases. The tasks aimed to match those in
current benchmarking suites. However, there were some restrictions. Criti-
cally, I had to ensure that the benchmarks would run on a system with limited
stack depth and without tail-call elimination. I was careful to consider common
benchmarking traps described by SPEC [12]. From a quantitative perspective,
these are hard to avoid; however, my benchmarks have been designed with these
pitfalls in mind. I believe my benchmarks avoid them.

The selection of benchmarks aided other areas of planning. Because MLC
had not been written when I wrote the benchmarks, the selection of the bench-
marks proved useful in picking my language subset. Writing benchmarks that
perform actual tasks was sufficient to ensure expressiveness of my subset.

2.5 Compilation Pipeline
I proposed three intermediate structures: The first, called AST (Abstract Syn-
tax Tree), is very similar to the structure of SML. The second, called TIR (Tree
Intermediate Representation), was designed to be a general structure to repre-
sent any functional language with minor additions but maintain similarity to
SML. The final representation, called ByteR (Bytecode Representation), bears

8

SML input file

AST

TIR

ByteR

bytecode assembly

lex and parse

lower

lower

output

Figure 2.2: Schematic for the pipeline of intermediate languages in MLC (mine
shaded in grey).

an instruction for instruction correspondence to JVM bytecode. The layout of
intermediate languages is shown in Figure 2.2.

Before writing code, I had difficulty providing more detail about represen-
tation structure. Instead, I specified the tasks each structure should facili-
tate. I wanted clean separation between compiler stages: the source-language-
dependent features, the optimisations, and the target-language-dependent fea-
tures. To achieve this, I settled on three main intermediate languages:

AST: The first stage designed for language dependent tasks such as typecheck-
ing.

TIR: The second stage designed to model a generic functional language. This
is where I imagined the optimisations would take place.

ByteR: The final stage to map to the target language cleanly.

This layout was chosen so MLC is not limited to a single frontend or single
target.

2.6 User Interaction
I intended to provide a flexible and intuitive interface as an access point for the
user. A command line executable fits this criterion for a compiler.

Users expect to interact with a compiler via the command line. A compiler
must be usable in scripts, where a command line interface is critical. Further,

9

a command line executable can be integrated into an IDE. I intended for com-
mand line flags to control MLC.

2.7 Development Strategy
In my proposal, I stated I would take a waterfall approach to development. I
intended to use one for each compilation pass. In practice, this worked well
for some passes (such as the lowering passes) where a requirements document
suited the problem at hand. In other cases where I found it difficult to fully
anticipate all potential issues, I adopted an iterative approach.

2.8 Testability
MLC has the benefit of being deterministic and having machine-readable input
and output. For testing, it can be treated as a black box. Mutable state can
make unit testing difficult, particularly if this mutability is subtle. Running a
new instance of the compiler for every test provides a solution. The optimum
is to have the compiler output information that can be checked automatically
for something expected.

After writing each pass, I added the option to produce a dump file. Each
dump file displays in text format the current intermediate representation and
any additional information relevant to that pass (e.g. reasoning behind inlining
decisions). This allows tests verifying the entire compilation pipeline up to a
new pass.

I intended for the testsuite to ensure regressions will be tracked and added
features will remain enabled. By testing after each pass, issues can be caught
where they occur. The testsuite was designed to be compiler agnostic. See
Section 3.4 for more detail.

I also required that scripts will interact cleanly with the test interface. The
command line interface described in Section 2.6 can accept flags for outputting
various intermediate forms. By ensuring each pass can output the intermediate
form after running, tests check individual passes for correctness in addition to
the compiler as a whole. To attempt to satisfy these requirements, I proposed
the development of a testbench that runs a set of SML files through the compiler.

I settled on the design principle of ensuring MLC never fails silently. Further,
when an error is encountered, it should occur as early as possible. This is to be
achieved with assertions and specialised verification passes that ensure tricky
transformations have been implemented correctly.

2.9 Selecting Tools
I chose Scala as an implementation language because it meets the “ease of im-
plementation” requirements. My rationale for choosing Scala is further justified
in the proposal. For a build tool, I selected Simple Build Tool (SBT). SBT
provides library management and partial rebuilds among other features, but it
is a notoriously difficult tool with which to work. Nevertheless, no other options

10

provide integration with crucial build-tool plugins for my development process
(such as one-jar [13], which allows MLC to be packaged into a single executable
jar file).

Version control is non-negotiable. It provides a roll-back option should some-
thing go wrong. It helps with backup and keeping code synchronised between
machines. I picked Git due to previous experience.

Documentation is recorded on several levels. Each pass contains a README.md
file that specifies the behaviour of that pass. Each non-trivial file contains a
block comment explaining its purpose. Each non-trivial method has a block
comment describing its parameters and behaviour. Line comments are used
in particularly difficult code. A new contributor should start by reading the
README.md files. A new user should start by reading the --help option.

My project is on Github [14]. Keeping it online meets my proposal’s backup
criteria2 and makes MLC easy to distribute. Making MLC free is good for the
long-term health of the project.

Continuous integration is a useful tool. It has prevented issues from building
up and ensures the online version works. For this project, I use TravisCI [15]
due to previous experience.

Python is a flexible language popular for scripting tasks. It fits the require-
ments for testsuite and benchmarking scripts. Those are, no speed requirements
and a need for sensible access to the command line.

2.10 Starting Point
In addition to Scala standard libraries, Scala provides a parser generator, the
ParserCombinators library [16] which I used to construct my grammar. For
command line argument processing, I use an SBT plugin scallop [17]. The
bytecode assembler, Krakatau, is on Github [18].

In my Python scripts, I use the Python libraries. I made minor adaptations
to one benchmark from Cumming [19] and a host of benchmarks from the MLton
benchmarking suite (described in more detail in Section 3.5). One testsuite
folder (test/general/) is dedicated to tests from online ML tutorials. Each
test cites its source and licence if specified. My changes to these tests are minor,
clearly marked and compatible with the licence.

For tracking performance during the project, I used the LLVM Nightly Test-
ing [20] framework. For drawing graphs, I use GNUPlot [21] and matplotlib [22].

2In addition, I keep snapshots from the last 30 days in a Dropbox folder. All major versions
are backed up with the CL backup on my benchmarking machine.

11

Chapter 3

Implementation

I have implemented a compiler that first lexes and parses SML source. This
is followed by typechecking and a series of lowering passes that eventually
produce Java bytecode. I have implemented bare-bones standard libraries as
specified in my proposal. These are written in Java and compatible with my
generated code. Finally, MLC contains an extensive testsuite of SML files and
a benchmarking suite. Both have their own run scripts written in a compiler
independent manner.1

MLC verifies SML code for syntax and type correctness, and implements
the transformation from SML source into the JVM bytecode assembly format
specified by Krakatau. Krakatau is a GPLv2-licensed JVM bytecode assembler.
The assembler outputs a number of Java .class files. These can be passed to
the jar utility [23] with the standard library .class files to create a runnable
.jar file.

The grammar I have implemented is shown in Figure 3.1.
My project is licensed with the GNU GPLv3. This ensures compatibility

with Krakatau’s licence should it become desirable to use Jython (an interface
between Java and Python) to avoid the Python dependency for the compiler.2

I have also written five benchmarks. To augment these benchmarks, I have
gathered suitable3 benchmarks from other suites. One has been adapted from
an ML tutorial [19]. I have adapted an additional four benchmarks for MLC
from MLton’s benchmark suite [26]. These were adapted in the last phase
of the project, and so they were not tracked over time. The measurement
infrastructure in the benchmarking suite is adaptable to any compiler.

I have compiled a large and varied testsuite for my subset of SML. The
testsuite infrastructure is also adaptable to any compiler.

1Because scripts were written before the creation of the compiler they were tested with
MosML.

2Currently this is not necessary as the assembler is treated as a separate program by the
shell script. Using Jython would make this a borderline case, as discussed in the GNU GPL
FAQ [25].

3 I used benchmarks that required few changes to fit my implemented subset.

12

Constants: con ::= float | int | char | string | true | false | () | []
Identifiers: id ::= [A-z][A-z0-9 ‘]∗

infix id ::= [+-*/] | ˆ | div | mod | <> | < | > | <= | >= | :: | @
unary id ::= ˜ | not | print
tyvar ::= ‘[A-z‘]∗ | ‘‘[A-z‘]∗

tycon ::= bool | char | exn | int | list | real | string | unit
longid ::= id. · · · .id

Types: typ ::= tyvar | id | (typ) | typ -> typ | typ ∗ · · · ∗ typ
Expressions: exp ::= con

longid
exp exp
exp; {exp }
exp infix id exp
unary id exp
(exp, . . . , exp)
[exp, . . . , exp]
let dec in exp end

exp : typ
if exp then exp else exp
exp andalso exp
exp orelse exp
case exp of match
fn match
exp handle match
raise exp

match ::= pat => exp {‘|’ match}
Patterns: pat ::=

id
con
pat :: pat
(pat, . . . , pat)
[pat, . . . , pat]
pat : typ

valpat ::= | id | (valpat, . . . , valpat)
Declarations: dec ::= val valbind

fun funbind
exception datconstr
datatype datbind
dec{; } dec

datbind ::= id = datconstr ‘|’ · · · ‘|’ datconstr
datconstr ::= id of typ
valbind ::= valpat = exp
funbind ::= id pat · · · pat {: typ} = exp {‘|’ funbind}

Figure 3.1: The grammar I have implemented. Details of individual lexemes
omitted. ‘|’ is used to represent the input string | and | is used to mean “or”.
Elements between {} are optional. Comments, which occur between (* and *)
are valid at all locations where whitespace is valid. Adapted from the grammar
by Rossberg with derived forms [24].

SML input file

Lex Parse Uniqueify Names Typecheck

Lower into TIR
Lift Datatype
DeclarationsFunction Outlining

Lambda Lifting Eliminate
Tail Recursion Function Inlining

Simplify 1Eliminate Lets
and Pattern MatchesCopy Propagation

Simplify 2 Number Variables Lower into ByteR

Dead Store
EliminationPeephole Pass

JVM Assembly File

ASCII

Lexemes AST AST

AST

TIRTIR

TIR

TIR TIR

TIR

TIRTIR

TIR

TIR TIR

ByteR

ByteR

ByteR

Figure 3.2: Schematic for the pipeline of intermediate languages. Optional
optimisation passes are in dashed boxes. Verification passes shaded in grey.

The top-level design of the compiler is an ordered list of passes. The ordering
of passes is naturally sequential.4 The output of one pass is provided as input
to the next pass. Optional passes act as no-ops when disabled.

3.1 Compiler Implementation Details
The full pipeline of the compiler is shown in Figure 3.2. There are two main
stages in the compiler: the first stage verifies the validity of input SML code
and transforms the source into the AST representation. The second stage takes
the TIR representation, which is initially similar to the AST representation, and
transforms it so that it can easily be represented in bytecode.

3.1.1 Verification
The verification stage can itself be broken down. The first step involves lexing
and parsing. These are implemented with the ParserCombinators library.

The lexer and parser detect syntactic errors in inputs. If none are found,
the parsed program is passed to the name uniquifier.

The name uniquifier takes as input an AST representation and changes the
names of the variables. After this, each variable name identifies, at most, one
variable. Name reuse is problematic for later stages that depend on information
derived by typechecking. The typechecker derives all types; however, without
differences between occurrences of same variable name x, the type of one occur-
rence may be lost.

1 val x = 10
2 val x = "Value␣is␣" ˆ Int.toString(x)

Figure 3.3: An example where new names are required.

Consider Figure 3.3. It is important to know the type of the first x is int
at the invocation of Int.toString so it can be correctly cast. However, with a
single environment, the value of env(x) can only be a single result.

The cleanest solution is to distinguish between the first and the second x
, which I achieve by making each name unique. A similar problem arises in
lambda lifted functions.

The typechecker is the most substantial part of the verifier. I have im-
plemented Hindley-Milner using algorithm-W as described by Damas and Mil-
ner [27]. A substantial portion of time spent in the typechecker is spent in the
unifier and type environment.

4In order to achieve good multicore performance, multiple instances of a compiler may be
invoked on different source files.

15

Environment Representation

I chose to implement the type environment as a map from variable name to
type. This is significantly more efficient than some alternatives (e.g. a linked
list). However, mutable maps do not implicitly deal with nesting issues the way
linked lists do.

As a result, the type environment structure is stored as a hierarchy of maps,
one map for each level of nesting. Lookups propagate through this hierarchy.
This approach is not strictly necessary when names are unique. However, it is
faster to apply operations that walk over every type in a particular nesting of
an environment if nestings do not contain every variable.

Unifiers are maps from type variable to type. Upon application of a unifier
to a type environment, the entire environment must be walked. Type variables
mapped by the unifier are looked up and changed in the environment. The
unifier ensures unifications are complete. For example, if a unifier maps
α → β, β → γ then α must map to γ. This is performed by tracing each
type variable through the unifier. Cyclical type reductions are possible.
The unifier must keep track of types it has already seen when unifying
a cyclic chain. If there is some chain α → β → γ → α, the unifier must
ensure each of these type variables map to the same result type variable (say α).

Unifiers have iterative components to them. Most of the compiler recursively
walks the tree and so any “infinite” loop results in an overflow. The unifier is
implemented using a while loop, which could fail by looping endlessly. This has
been resolved here, as elsewhere, by capping the number of iterations to a large
value (significantly larger than viable in practice due to limitations elsewhere).
If it is exceeded, an exception is thrown.

Typechecker Bugs

My typechecker has one of the few known bugs in my project. This is based on
the faulty assumption a type variable must be forall scoped when it is used at
a function call site. This is not necessarily the case as in Figure 3.4. This is
currently accepted, but should be rejected.

This is difficult to address because it requires the addition of a tag on every
type variable. I estimate that this would take another week to implement.

3.1.2 Designing TIR
TIR is my optimisation structure. It also acts as a translation language that is
lowered progressively. To achieve this, TIR has an ML-like subset and a subset
that introduces features much closer to the underlying bytecode.

There are three main forms of TIR:

1. Before lambda lifting: similar to SML structure.

2. After lambda lifting: all functions are lambda lifted to the top level. Clo-
sures created where necessary.

16

1 fun f x =
2 let
3 fun g y = f x
4 in
5 g
6 end

Figure 3.4: In this example, the use of f should not be forall qualified because
it is within the declaration of f. Instead, my typechecker sees f to have type
∀α, β.α → β and gives g the type γ → δ (because the use of f is instantiated
with fresh variables since). This should be rejected as it should introduce a
cyclical type.

3. After pattern match elimination: all functions contain a single case.
Nested let declarations are eliminated. Case statements are compiled
into if statements.

With more time, these structural requirements would ideally be enforced
using more intermediate languages. Instead, these structural requirements are
verified by verification passes. This was done to reduce implementation load.
The other value of using one main intermediate language while constructing
the compiler is flexibility. New node types may be added as needed (which is
regularly in a rapidly evolving compiler) without the cost of creating a new in-
termediate language. A single optimisation language also means analysis passes
need not be duplicated.

Further, rebuilding the entire program tree on each pass is wasteful. There
are garbage collection problems for compilers with immutable trees. See Ap-
pendix B for details. TIR nodes are mutable to deal with these issues. This
approach also offers more flexibility. Nodes may have values assigned in call-
backs rather than requiring assignments at the point of encounter during a walk.

The semantics of the nodes in the TIR are described in Figure 3.5.

3.1.3 Datatype Lifting
Datatype lifting takes datatypes not declared at the top level and moves them to
the top level. It is similar to lambda lifting. Because there are fewer complexities
(datatypes do not need closure analysis) this is performed earlier in the pipeline.
The functionality is very similar to that in Section 3.1.5. An example is shown
in Figure 3.6.

3.1.4 Outlining
Outlining is a space optimisation in many compilers (e.g. LLVM [28]). My out-
liner is designed without an optimisation cost model (although the application
of the transformation is identical). The need for this pass is best described
through an example.

17

Static Semantics:

TExpWhileTrue E ` exp ⇒ τ loop
E ` while (true) exp ⇒ τ

TExpContinue
E ` Continue⇒ τ loop

TExpBreak E ` exp ⇒ τ

E ` Break(exp)⇒ τ loop

TExpFunLet

E ⊕ {v1 → α1, . . . , vn → αn} ` exp ⇒ τ

Where α1, . . . , αn

are the types of
the expressions as-
signed to v1, . . . , vn

E ` funlet v1, . . . , vn in exp end⇒ τ

TExpListExtract E ` exp ⇒ τ list
E ` exp[n]⇒ τ

TExpAssign E ` exp ⇒ τ v ∈ E E(v) = τ

E ` assign v to exp ⇒ unit

Dynamic Semantics:

TExpWhileTrue (1) s, E ` exp ⇒ s′, Continue s′, E ` while (true) exp ⇒ s′′, v

s, E ` while (true) exp ⇒ s′′, v

TExpWhileTrue (2) s, E ` exp ⇒ s′, Break(exp′) s′, E ` exp′ ⇒ s′′, v

s, E ` while (true) exp ⇒ s′′, v

TExpFunLet s, E ` exp ⇒ s′, v

s, E ` funlet v1, . . . , vn in exp end ⇒ s′, v

TExpListExtract (1) s, E ` exp ⇒ s′, l length(exp) > n

s,E ` exp[n]⇒ s′, hd(tl(· · · tl(l) · · ·)︸ ︷︷ ︸
n times

)

TExpListExtract (2) s, E ` exp ⇒ s′, l length(exp) ≤ n
s,E ` exp[n]⇒ s′, Runtime Exception

TExpAssign s, E ` exp ⇒ s′, x

s, E ` assign v to exp ⇒ s′ + {v → x}, ()

Figure 3.5: The static and dynamic semantics of TIR. Continue and Break are
internal monads of type τ loop. This should be interpreted in addition to the
semantics of SML [8] as all SML terms retain their semantics.

1 val _ =
2 let
3 datatype tree =
4 Leaf of int
5 | Node of tree * tree
6 exception Fail of int
7 in
8 ...
9 end

(a) Before datatype lifting

1 datatype tree =
2 Leaf of int
3 | Node of tree * tree
4 exception Fail of int
5
6 val _ =
7 let
8
9 in

10 ...
11 end

(b) After datatype lifting

Figure 3.6: The TIR before and after datatype lifting. Exception declarations
are also lifted.

1 exception Exception
2 fun f x =
3 (raise Exception handle _ => 1) +
4 (raise Exception handle _ => 2)

Figure 3.7: A problematic case when handle blocks clear the operand stack.

Consider the expression in Figure 3.7. Because the JVM is designed for an
imperative language, try-catch blocks are not expressions. When an exception is
thrown, the work stack is cleared. To see the importance, consider an exception
thrown by + in Figure 3.8. Both operands (1 and 2) would be on the stack,
but clearly any code in the catch block will not use these. Therefore, the work
stack should be cleared. However, with code like in Figure 3.7, clearing the work
stack when entering a catch means operand 1 is not available when we attempt
to execute the addition.

This pass transforms code like that in Figure 3.7 into code like that in
Figure 3.9, which solves the problem.

3.1.5 Lambda Lifting
Before lambda lifting takes place, the structure of TIR is similar to AST. The
JVM only supports functions declared at the top level (MLC’s representation
is discussed in Section 3.2). There are several ways to remove nested functions
from programs. Lambda lifting is a natural choice here: MLC deals with the
issue of closure creation gracefully using currying.

A natural approach to lambda lifting is faced with some challenges surround-
ing the issue of closure creation. For example, a closure variable may not be
in scope when a function is applied. To resolve this, my lambda lifter finds all

19

1 int j;
2 try {
3 j = 1 + 2;
4 } catch (Exception e) {
5 ...
6 }

Figure 3.8: A try-catch block in Java.

1 exception Exception
2
3 fun f x =
4 (let
5 fun #a _ =
6 raise Exception handle _ => 1
7 in
8 #a ()
9 end) +

10 (let
11 fun #b _ =
12 raise Exception handle _ => 2
13 in
14 #b ()
15 end)

Figure 3.9: Example code after handle outlining. Note the introduction of let
statements. This leaves the difficulty of creating closures to the lambda lifter.

immediate uses of a function and replaces them with partial applications of all
closure variables. Figure 3.10 shows an example. Further difficulties arise in
mutually recursive functions as the closures are dependent on each other. Fig-
ure 3.11 shows an example. An iterative approach is adopted to compute the
minimal closures.

In addition to lifting nested function declarations, my lambda lifter lifts
anonymous functions into top level functions. After this pass, all non-register
declarations (declarations that cannot be put in a local JVM variable) exist at
the top level.

3.1.6 Let Elimination
Bytecode methods specify stack space requirements at the function entry point.
This includes work space and the number of local variables. Let elimination
enables a calculation of the number of local variables.

The let elimination pass also performs pattern match elimination (described

20

1 val x =
2 let
3 val y = 1
4 fun f z = y + z
5 in
6 f
7 end
8
9 val _ = x 3

(a) Before lambda lifting.

1 fun #f y z = y + z
2 val x =
3 let
4 val y = 1
5 in
6 #f y
7 end
8
9 val _ = x 3

(b) After lambda lifting.

Figure 3.10: An example of MLC’s lambda lifter.

1 let
2 val y = 1
3 val z = 1
4 fun f x =
5 x + y + (g x)
6 and g x =
7 x + z + (f x)
8 in
9 f

10 end
(a) Before lambda lifting.

1 fun f# (y, z) x =
2 x + y + (g# (y, z) x)
3 and g# (y, z) x =
4 x + z + (f# (y, z) x)
5
6 let
7 val y = 1
8 val z = 1
9 in

10 f# (y, z)
11 end

(b) After lambda lifting.

Figure 3.11: An example of MLC’s lambda lifter. Both y and z must be included
in each call.

1 fun loop a = loop a
2 fun f _ =
3 if false then
4 let
5 val x = loop 1
6 in
7 x
8 end
9 else

10 let
11 val z = 1
12 in
13 z
14 end

(a) Before let elimination

1 fun loop a = loop a
2 fun f _ =
3 funlet
4 val x
5 val z
6 in
7 if false then
8 assign x to (loop 1);
9 x

10 else
11 assign z to 1;
12 z
13 end

(b) After let elimination

Figure 3.12: Variables lifted out of lets. The lets nested within the expression
are moved into a single funlet expression. To avoid invalid changes causing
non-termination of f, assigns must be placed where variables were originally
declared. The assign node is not SML syntax, but represents the internal
expression defined in Figure 3.5.

later). This is because assigning variables in lets to values requires function
arguments to have their values set appropriately. An assignment of:

1 fun f (x :: xs) =
2 let val y = x
3 in y end

Requires x is assigned before y is. Setting the value of x safely requires pat-
tern match checking. Although approaches that do not involve merging these
passes are possible, they involve leaving the tree in an invalid state between
passes. This makes the ordering of passes brittle and defeats the point of sepa-
rating the passes.

The let elimination pass changes function structure. All function bodies
are replaced by a single funlet expression. This declares all variables at the
beginning of the function. To avoid issues computing values that need not
be computed, assign nodes are introduced at locations where variables were
originally declared and defined. Figure 3.12 shows an example.

3.1.7 Pattern Match Elimination
Pattern match elimination is performed during let elimination. This process
converts pattern matches into sequences of if statements.

This is implemented with backtracking. That is, if we have a function of
n arguments and a pattern fails to match the kth argument, the next pattern
starts matching from argument 0. I have found this to be suitably efficient.

22

x: Assign x to the value of the parent node.

: Evaluate to true.

c: For c some constant. Evaluate to true if the parent node is equal to c.

[x1, ..., xn]: Check that the length of the argument is n. If so, assign each
element to the appropriate list element. Recursively pattern match on
each list element, with list element as the parent node. Evaluate to true
if all list elements match successfully.

(x1, ..., xn): We are guaranteed by typechecking the tuple is the correct
length. Assign each xi to the ith element of the tuple. Evaluate to true if
the pattern match for each element evaluates to true.

x :: xs: Check the length of the parent node is at least 1. If so, assign x, xs
the head and tail of the parent node, respectively. Then match x and xs
recursively.

Datatype(args): Check the datatype is the type expected using instanceof.
If so, extract the arguments and recursively match. If there are no argu-
ments, evaluate to true. Otherwise, evaluate to false.

Figure 3.13: Pattern match conversion algorithm. The parent node begins as
the function argument. Each parent node is assigned into a variable to avoid
recomputation.

Non-backtracking methods exist (e.g. Maranget [29]) and would be suitable
extensions.

The algorithm I implemented is simple, but generates some tautological
code. This choice was made because it is easier to reason correctness. Further,
MLC has optimisation passes specially designed to remove this code bloat. The
decision taken here, as elsewhere, is that lowering passes aim solely to change the
representation correctly. Optimisation passes aim to make generated code faster.
Keeping these aims separate is important in maintaining MLC’s structure.

The algorithm by cases is shown in Figure 3.13.

3.1.8 Variable Numbering
The JVM uses naturals to identify local variables. As all local variables are
declared into a single top-level let expression (Section 3.1.6), this pass numbers
all variables 0 to n.

3.2 Representing TIR with Bytecode
In this section, rather than focusing on the details of bytecode, I present
implementation details in terms of Java where possible. JVM bytecode was

23

1 public class Tuple {
2 public Object [] elements;
3
4 public Tuple(int size) {
5 elements = new Object[size];
6 }
7
8 @Override
9 public boolean equals(Object other) {

10 ...
11 }
12 }

Figure 3.14: A sketch implementation of Tuple class.

designed specifically for Java 1.0 so the two bear close resemblance. As a result
it is often easier to see what MLC generates in terms of Java.

The JVM offers features not regularly found at assembly level. It provides lo-
cal variables indexed by 16-bit integers, so true register allocation is not needed.
The JVM provides classes and instructions to invoke methods statically or dy-
namically. It provides instructions for creating objects (the only way to allocate
heap memory) and garbage collection for these objects. It can load arbitrary
classes at runtime. The JVM does significant runtime checking. Variables may
not be accessed before they are assigned. Function calls with incorrect argu-
ment types result in Java exceptions. These features are important in my design
choices. The most important parts of my representation are described:

Tuples: Tuples are represented with the class Tuple, defined in the MLC li-
braries.
My lowering plan states that tuples should be represented as in Scala, with
a fixed set of classes Tuple2, ..., TupleN each holding a fixed number
of elements.
For flexibility, I chose to represent these as a single class. Tuple contains
an array of tuple elements. The Java code for this is simple, and shown
in Figure 3.14.

Single Curried Argument Functions: Single curried argument functions
are represented by classes on the JVM. This decision was again inspired
by Scala. In Scala, functions are a set of classes, Function1, Function2,
..., FunctionN; so, no function with more than N arguments can be rep-
resented.
For flexibility, MLC defines a single function class that can take arbitrar-
ily sized tuple objects as argument. All functions extend the abstract
Function class. This specifies an apply method, taking an Object and

24

Class f (extends Function)
f(): f (constructor)
apply (override)

Interface Function

apply(Object): Object

Function Instance

Result

constructor

Allocates the function on the
heap

apply (override)

Takes x as an argument.
Computes and returns x + 1.

constructor

applyFunction Argument

Figure 3.15: The life cycle of a single argument function fun f x = x + 1.

returning an Object. Casting is performed as required to coerce objects
to the correct types.
Figure 3.15 shows how single argument functions work.

Multiple Curried Argument Functions: Multiple curried argument func-
tions are formed with chains of single argument functions. The first curried
application returns a new function. The last curried application executes
the compiled function body.
A key design choice is how curried arguments are passed. One approach
is, for the ith curried call, to pass a reference to the parent function (the
(i − 1)th curried call). Access to the 0th argument can then be achieved
by traversing all the parents. However, this O(CurriedLength) access time
per argument is far from optimal for arguments accessed many times.
Instead, for the ith curried function call, all i− 1 previous arguments can
be passed and stored as class-local variables. The creation of a curried
function closure is then O(CurriedLength2) but it allows O(1) argument
access time. This is what is implemented in MLC. This implementation
better opens scope for future optimisations to include elimination of cur-
rying (instead using tuples or multiple argument functions). This is a
common feature for SML compilers to have e.g. CakeML [30] and is listed
as a useful pass by MLton [31]. Figure 3.16 shows how curried functions
work.

25

Class f0 (extends Function)
f0():

f0 (constructor)
apply(Object x):

f1 (override)

Class f1 (extends Function)
f1(Object x):

f1 (constructor)
apply(Object y):

f2 (override)

Class f2 (extends Function)
f2(Object x, Object y):

f2 (constructor)
apply(Object z):

Object (override)

Interface Function
apply(Object): Object

Instance of f0

Instance of f1

Instance of f2

"ABC"

apply

apply

apply

First curried
argument x value "A"

Second curried
argument y value "B"

Third (last) curried
argument z value "C"

Copy reference to
argument x ("A")

Copy reference to
arguments x and
y ("A" and "B")

Compute x ˆ y ˆ z

new f0

Figure 3.16: Diagram of the behaviour of an n argument curried function,
fun g x y z = x ˆ y ˆ z, applied as g "A" "B" "C"

Expressions: Bytecode is stack oriented. Expressions are computed in the
normal way for stack-oriented languages. For an n-ary operator, the code
is:

1 <compute operand 0>
2 <compute operand 1>
3 ...
4 <compute operand n>
5 operation

Entry Point: The entry point of a program is all top-level val declarations.
These are computed within the main method on the JVM.

Datatypes: Datatypes are represented as Java classes. Each datatype is an
instance of Function so implements an apply method. The apply method
is used to create new datatypes, taking the arguments of the datatype and
returning itself. Each datatype implements an unapply method, which
returns the data within the type.
Pattern matching uses the instanceof Java primitive. This is described
in more detail in Figure 3.13. Equality requires each datatype class to
have a unique ID. instanceof may not be used like in pattern matching
as it requires a statically known comparison class which is not possible in
polymorphic equality functions. To check for equality, IDs are compared.
If they are identical, the data in each datatype is recursively compared.

Exceptions: Exceptions are a special case of datatypes. The standard library
contains an MLCException class that extends the Datatype class.
A getThrowable() method returns a throwable Java object. This throw-
able is a wrapper around the internal datatype, so the datatype can be
recovered if the exception is caught.
Catch blocks catch all MLCException exceptions. When an exception is
caught, the datatype is extracted from the throwable. Pattern matching
happens on the datatype. If no matches are found, the exception is re-
wrapped and re-thrown.

3.3 Optimisation Implementation Details
All optimisations are trade-offs. Any implementations must consider compile
time as well generated code speed-ups. I have taken a similar approach to
GCC, where optimisations must take less than O(n2) time, where n may be any
programmer-visible feature [32].

3.3.1 Tail-Call Elimination Pass
My tail-call elimination (TCE) pass has two parts. First, tail recursive func-
tions are identified. Next, tail recursion is replaced with a while(true) loop.
Semantics for this loop are given in Figure 3.5.

Elimination consists of four steps:

27

1 fun f x = x
2
3 fun count n = (* A *) f ((* B *) count (n - 1))
4
5 val x = (* C *) count 10

Figure 3.17: Classification of call sites. (A) and (B) are labelled as hot, (C) is
labelled as cold.

1. Function parameters are made mutable.

2. The function body is replaced with a case statement. Pattern matches in
the function definition are recreated within the case statement.

3. Any return values are replaced with break(value).

4. Any recursive calls are replaced with reassignments to the function pa-
rameters followed by a continue.

In order to convert function patterns into case patterns, TCE introduces
more tuples. Curried function arguments are tupled for pattern matching. This
introduces some overhead. Nevertheless, TCE is a worthwhile pass to increase
the expressiveness of SML.

3.3.2 Function Inlining
At each function call site, the inlining pass finds the called function definition.
The inlining size trade-off is estimated, and the function is inlined if profitable.
Decisions are made based on the nature of the call site and the size of the
function.

My approach is simple due to time constraints. Call sites are identified as
hot or cold. A hot call site appears in a recursive function. All others are cold.
Figure 3.17 shows an example.

Estimating the cost of an inlined function is difficult. Inlining is ultimately
an optimisation that should occur early because it enables many further optimi-
sation passes. The shape of an inlined function may change considerably before
compilation is finished, because many passes have yet to run. A function call
takes 4 instructions in bytecode. Experimentation suggested 28 instructions as a
suitable maximum to inline. This is a conservative estimate, and a justified one
since inlining can easily go wrong. My pass estimates function size by counting
the number of tree nodes.5

This can add significant compilation time due to increased code size. Fig-
ure 4.10 shows an example. The time complexity of this pass is:

O
(
Tree Size + numCall Sites × Curry Depth + num2

Functions
)

5This has obvious failure cases, e.g. functions with dead code that is later eliminated.

28

Unfortunately, this equation has a large constant factor. With a bet-
ter implementation,6 the addition factor of num2

Functions could be reduced to
numFunctions. Note that since an N argument curried call is applied at N call
sites, this pass is in fact quadratic in Curry Depth. Overheads, the 3 tree walks
required and the poor inlining decisions risk mean inlining must be requested
with a command line flag.

3.3.3 Copy Propagation Pass
Elimination of pattern matching introduces many superfluous variable copies
(see Figure 3.13).

This pass is flow insensitive. It works by finding variables with single assign-
ment sites. It then only considers copying assignments. Uses of that variable
may be replaced by the assignment’s r-value. This pass has also been adapted
for constant propagation where variables assigned to simple constants are copied
into use sites.

The flow insensitivity is justified as no language features which could take
advantage of flow sensitivity are supported. All input code is pure so there is
at most one assignment to each variable. All compiler generated copies may be
eliminated in a flow insensitive manner.

Beyond simplifying the implementation, this makes copy propagation signifi-
cantly faster by avoiding constructing a CFG (control flow graph). I have previ-
ously discussed my project’s aim to provide a (functional) language-independent
compiler. To support this aim, the copy propagation pass is designed so use of
flow-sensitive approaches should not require a total rewrite.

This pass has time complexity (per function):

O (Variables× Function Size)

Where Variables includes variables generated by MLC. The time complexity
is explained by the following algorithm:

1. Iterate over each variable (O(Variables)). For each:

(a) Find assignment sites for a variable (O(Function Size)).
(b) If copy propagating, find all uses of the variable and replace them

(O(Function Size)).

Measurements show this equation to be reasonable. Experimental data are
shown in Figure 3.18.

3.3.4 Simplify Passes
The simplify passes are critical for compiler performance. They enable sim-
plifications in lowering and optimisation pass design. Some implemented sim-
plifications are shown in Figure 3.19. The passes are designed so that adding

6This could be achieved using hash tables rather than linear searches to find function
definitions.

29

Function Applications

200 400 600 800 1000 1200 1400 Fu
nc
tio
n D

ec
lar
ati
on
s

200
400

600
800
1000

1200
1400

T
im
e
 s
p
e
n
t
in
 I
n
lin
in
g
 p
a
ss
 (
m
s)

50

100

150

200

250

300

350

400

450

Time spent in Inlining pass vs number of
declarations and applications

(a) Time spent in the inlining pass vs the number of declarations
and applications.

200 400 600 800 1000 1200 1400
Function Declarations and Function Applications

50

100

150

200

250

300

350

400

450

T
im

e
 s
p
e
n
t
in
 I
n
lin

in
g
 p
a
ss
 (
m
s)

Time spent in Inlining pass with an equal number of
declarations and applications

(b) This shows a cut through Figure 3.18a along the line where
Function Applications = Function Declarations.

Figure 3.18: Execution times plotted against the number of functions and ap-
plications. Due to time constraints, a single data point has been taken at each
mesh location. Values have been smoothed with an 8x8 median filter.

1 (* Before simplication. *)
2 case x of
3 n => n + 1
4
5 (* After simplication. *)
6 x + 1

(a) Simplifying a case statement.

1 (* Before simplification. *)
2 if true then
3 x
4 else
5 y
6
7 (* After simplication. *)
8 x

(b) Simplifying an if statement.

Figure 3.19: Examples of the simplify pass.

1 val a = 1
2 val b = 2
3 val c = 2 * a
4 val d = print(Int.toString(a + b))

Figure 3.20: The stores to a and b are not safe to remove. The store to c is
safe to delete. Removing the write into d is safe but removing the computation
is not.

additional simplifications is easy. The defining feature of an optimisation in a
simplify pass is contextual independence. Any structure that can be reduced
without program-wide context fits in the simplify infrastructure.

The simplify passes walk the tree and pattern match on elements. Worst
case runtime is nearly linear:

O (Tree Nodes× Pattern Size)

Where we rarely go beyond O (Tree Nodes) as matching patterns completely
is rare. Overhead is small because simplify requires a single tree walk and no
additional data structures.

3.3.5 Dead Store Elimination Pass
Dead store elimination removes unused computations and stores to dead vari-
ables. Dead variables will be written to before they are next read, or will never
be read from.

The pass uses the standard algorithm described in the optimising compilers
lecture course [33]. A CFG is built, and liveness information is determined.
Dead stores are not computed if their computation is safe to delete. If their
computation is not safe to delete, the value is computed and thrown away.
Figure 3.20 shows an example.

Obviously, this paradigm does not occur in pure functional languages with-
out reassignments. The need for this pass is justified by JVM runtime checks.
The JVM requires stores to all variables before they are read. This is asserted on
all statically visible code paths. Elimination of pattern matching introduces tau-
tological expressions where dynamically unavailable but statically-visible paths
do not assign before use. To avoid JVM verification errors, lowering from TIR to
ByteR requires defensively inserting stores of null to local variables upon func-
tion entry. Most of these stores can be safely eliminated. Dead store elimination
exists in the ByteR optimiser for exactly this. This pass is referred to as dead
code elimination in the compiler and in the proposal due to a misunderstanding.

3.3.6 Peephole Pass
The peephole pass implements a linear walk of instructions. A handler class
requests all sequential sequences of instructions with length n, for every required

31

0 20 40 60 80 100
Number of 'val' declarations

0

20

40

60

80

Ti
m
e
(m

s)
Time taken to execute pass peephole.22 against number of vals

Figure 3.21: Time taken to execute the peephole pass plotted against the number
of val declarations. The spike between 45 and 53 comes from the garbage
collector. Enabling verbose printing on the garbage collector results in “out
of memory” messages during peephole for between 45 and 53 val declarations.
More val declarations and faults occur before. Fewer val declarations and
faults occur after. All val declarations exist in a single bytecode method. The
growth appears linear after initial faster growth.

n. Each sequence is matched against defined peepholes, each of which extend a
common Peephole interface. On a match, the peephole returns new instructions
to replace the old ones.

Currently, there are relatively few peepholes implemented. These focus on
removing common push-pop sequences and variable boxing followed by variable
unboxing.

The handler is designed to manage a large number of peepholes using a
binary search of peepholes on each sequence. A linear search is currently used
because the number of peepholes is small enough that the extra overhead of
binary search does not justify the reduced time complexity. Peepholes provide
an easy way of making simple changes. Additional peepholes are best identified
by inspecting generated code for common sequences of instructions that should
be removed or replaced.

With this extension, the time complexity of the peephole pass becomes:

32

O

(∑
Functions

log (NumPeepholes)× Instrsin function × Biggest Peephole
)

(3.1)

Since the set of peepholes is fixed on each compilation, this is a linear opti-
misation pass. The measured time of this pass is shown in Figure 3.21.

The peephole pass is run by default. This is for two reasons: first, the time
complexity in Equation 3.1 is linear in program size. This is not an asymptotic
increase in compile time compared to lowering passes that must run over all in-
structions. Second, the TIR-to-ByteR lowering pass produces many detrimental
compilation artefacts. This pass removes those. I have concluded that while this
is strictly an optimisation, the performance benefit for the low time complexity
means it should not require an optimisation flag to enable.

3.3.7 Phase Ordering Problem
Ordering of optimisation passes has drastic effects on generated code quality.
Where passes act on the same parts of a program, well-reasoned decisions about
their order are important. Intuition can be gathered both from MLC’s inter-
nal structure and from existing compilers. I will discuss pairwise orderings of
optimisation passes that interact.

Tail Call Elimination and Inlining: Experiments with LLVM7 and inspect-
ing the MLton source code [34] show they both do tail-call elimination
before inlining.
I believe tail-call elimination would be hampered if inlining ran first. To
see this, consider a small function that can be inlined, but is marked for
tail recursion. The tail recursion will be removed, but the old version may
have been inlined elsewhere. This will leave one tail call that could have
been eliminated. An example of this redundant function call is shown in
Figure 3.22.

Simplification and Inlining: The best inlining decisions introduce many
simplifiable structures. A following pass simplifying these is extremely
profitable.
Figure 3.23 shows an example.

Copy Propagation and Simplification: Copy propagation detects and re-
moves copies generated by lower program.
However, copy propagation fills the tree with redundant structures. To
maintain tree correctness, eliminated copies are replaced with unit (they
are assignments to mutable variables). By deferring simplification until
after copy propagation, MLC can remove these long before the peephole
pass runs. This is beneficial for compile time and helps following passes
understand the tree. An example is shown in Figure 3.24.

7This was done with the -print-after-all flag.

33

1 (* count before TCE. *)
2 fun count 0 = 0
3 | count n = count (n - 1)
4
5 (* count after TCE. *)
6 fun count n =
7 while true (
8 case n of
9 0 => Break(0)

10 | x => assign n to x - 1; Continue
11)
12
13 (* f before inlining. *)
14 fun f x = count x
15
16 (* f after inlining the TCE version of count. *)
17 fun f x =
18 case x of
19 n’ =>
20 while true (
21 case n’ of
22 0 => Break(0)
23 | x => assign n’ to x - 1; Continue
24)
25
26 (* f after inlining the original version of count. *)
27 fun f x =
28 case x of
29 0 => 0
30 | n’ => count (n’ - 1)

Figure 3.22: An example for why tail-call elimination should run before function
inlining.

1 fun add (x, y) =
2 x + y
3
4 fun f(x, y) =
5 case (x, y) of
6 (x’, y’) =>
7 x’ + y’

(a) After inlining of add into f.

1 fun add (x, y) =
2 x + y
3
4 fun f(x, y) =
5 x + y

(b) After Simplification.

Figure 3.23: Code before and after case-elimination from the first Simplify
pass. Here, the function add has been inlined, resulting in a redundant case
statement.

1 val _ =
2 assign x to 1;
3 assign y to x;
4 assign a to 2;
5 assign z to x;
6 y + z

(a) Before copy propagation.

1 val _ =
2 assign x to 1;
3 ();
4 assign a to 2;
5 ();
6 x + a

(b) After copy propagation.

Figure 3.24: An example of copy propagation leaving defects (empty tuples)
that can be cleaned up.

1 iconst_1
2 invokestatic Method java/lang/Integer valueOf
3 (I)Ljava/lang/Integer;
4 astore_1

(a) Before DSE.

1 iconst_1
2 invokestatic Method java/lang/Integer valueOf
3 (I)Ljava/lang/Integer;
4 pop

(b) After DSE concludes the store is dead.

Figure 3.25: The DSE pass can detect that the store to local 1 (astore_1) is
dead. However, it cannot detect that the function call is safe to remove. It
replaces astore with pop (in red). The peephole pass knows the function call
is side effectless and can be deleted.

Dead Store Elimination and Peephole: Dead store elimination (DSE)
runs before peephole. This is because DSE creates opportunities that
peephole can act on. This is rarely true the other way around.
For example, stores the DSE pass can detect as dead but cannot eliminate
(e.g., because the value is generated by a function call DSE cannot prove
is side effectless) are replaced with pop instructions. An example is shown
in Figure 3.25. The peephole pass is better at detecting these cases as it
has a list of functions known to be side effectless.
This is not because it is impossible to analyse side effects within the DSE
pass. However, leaving this task to the peephole pass removes duplicated
code and increases maintainability.

3.4 Testsuite Implementation Details
The core compiler alone is over 11,000 lines of Scala. Any sustained progress
requires that regressions are tracked as they are introduced. MLC’s testsuite
aims to solve this problem. The testsuite is implemented in two parts, a Python
script to run tests and a set of SML files to build. The script provides options
for commonly required actions during development. When run, it searches test
folders for SML files and compiles them. The output is a list of all tests run,
with failures marked.

Each SML file contains several directives specifying how the test is executed
and what result is expected. There are four directives:

t-compile: Compile this file. Compilation flags may be specified.

t-fail: Expect compilation to fail (e.g. due to a type error).

t-run: After compilation, run the executable. Accept a parameter to verify
expected output.

t-scan: Match a specified regular expression against a specified dump file and
report the result.

Dump files are optionally produced by MLC during each compilation pass.
They show internal state after the pass runs, and useful debugging information
(e.g., the dead store elimination pass shows liveness information). The compiler
produces a dump file when a flag is specified. Variants of the t-scan directive
can require expressions to appear no, one or more times, or N times for any
particular N .

This approach has worked extremely well. There are no mutable-state issues
since a difference instance of MLC runs each test. Regression tests are easily
added by putting the SML file that failed into the testsuite.8 The whole testsuite
is wrapped in a shell script. This builds the compiler, the standard libraries
and runs the testsuite. TravisCI runs this on every commit [15]. This approach
makes it possible to use entire programs for thorough testing. The testsuite
currently contains 212 SML files.

8This is the case provided there are no licence issues.

36

3.5 Benchmarking Implementation Details
The benchmarking is similarly composed of two parts: the Python run script and
a set of benchmarks. The run script runs the benchmarks with appropriate flags,
collects performance information and verifies output is correct. Performance
information includes produced executable size and execution time.

In addition, the Linux tool perf [11] is used to gather detailed statistics
for each benchmark. The options for perf are machine dependent, but on my
benchmarking machine I collect:

• Instruction count.
• Branch predictor hits and misses.
• Data cache hits and misses.
• Instruction cache hits and misses.
• Clock cycles spent in the CPU, on the bus and in the memory system.

These data are useful in pinpointing how — and whether — optimisations
help. The Linux tool taskset [35] is used to avoid noise problems introduced
by migration between cores.

Recorded data are stored in a JSON format compatible with the LLVM
Nightly Testing [20] (LNT) framework. LNT is used to track executable size
and speed through time. Continuous visualisation of performance data is useful
in making development decisions, and in providing a basis for the evaluation
chapter. Only benchmarks written in the first phase of this project were tracked
with LNT.

The benchmarks are:

alignment: Computes a sequence alignment between genomes with the Smith-
Waterman algorithm [36]. Tracked with LNT.

dft: Computes a discrete Fourier transform. Tracked with LNT.

mandelbrot: Computes the Mandelbrot set. Slightly adapted for my project
from Cumming [19]. Tracked with LNT.

matrix multiplication: Multiplies matrices. Tracked with LNT.

inlining: Runs many simple function applications designed to showcase inlin-
ing. Tracked with LNT.

utils: Computes several small functions from ML For the Working Program-
mer [37]. Tracked with LNT.

knuth bendix: Implements the Knuth-Bendix algorithm [38]. Taken from
MLton’s benchmark suite.

life: Simulates Conway’s game of life as presented by Gardner [39]. Taken from
MLton’s benchmark suite.

peek: Stress tests lists and datatypes. Taken from MLton’s benchmark suite.

tak: Computes Takeuchi’s tak function, designed to compare LISP systems as
presented by McCarthy [40]. Taken from MLton’s benchmark suite.

37

3.6 Standard Library Implementation Details
A complete standard library is not the aim of this project. One of the most
important extensions I propose is enabling access to the Java standard libraries.

Nevertheless, some libraries are required to represent tuples, higher order
functions and immutable lists. These are implemented in Java. They are com-
piled during installation and are statically linked into produced .jar files.

The libraries provide maths functions required to run my benchmarks. The
libraries have been implemented in a manner compatible (with the same ob-
servable behaviour when running my benchmarks) with the MosML, MLton,
PolyML and SML/NJ libraries so benchmarking results may be compared.

3.7 Compilation Scripts Implementation De-
tails

As discussed in the introduction to this chapter, MLC is not straightforward to
use without a wrapper.

I have provided an installation script to deal with the complexities of in-
stalling the standard libraries. This installation script also generates a shell
script to hide auxiliary and mechanical compilation steps (such as running the
assembler and linking the .jar file) from the user.

The installation script builds MLC and the standard libraries. It then down-
loads the assembler. Finally, it creates links to the assembler and standard
libraries in the execution script. The flow for the execution script is:

1. Create a temp directory for generated class files and the bytecode assembly
file.

2. Execute MLC with command line arguments forwarded.

3. Execute Krakatau on the assembly file. This produces a number of .class
files.

4. Create a .jar file from the .class files and libraries.

3.8 Summary
There are three major components of this project: the compiler, the optimiser
and the infrastructure. All three integrate cleanly with each other despite co-
operation requirements.

I have been successful in modularising MLC at several scales. The testsuite
and benchmarking suite are compatible with other compilers. This has been
demonstrated in practice by running my testsuite with MosML, and running
the benchmarking suite with MosML, MLton, PolyML and SML/NJ. Internally,
decoupling of components has been mostly successful. The TIR representation
is as generic as planned. However, in retrospect, the ByteR representation is
not as flexible as intended. Ideally, optimisation passes written for ByteR would

38

be flexible enough to adapt to any target. This has not turned out to be the
case. I believe the current bytecode optimisations are only easily extendable to
other stack-based targets with similar restrictions on jumps as bytecode. To add
another backend, I would first focus on a single generic representation decoupled
from the output language and only converted to target instructions on output.

39

Chapter 4

Evaluation

4.1 Methodology
The methodologies behind each analysis share much common ground. Multiple
data points have been collected when possible (where not this is made clear).
The upper and lower approximately1 15th percentiles have been used for error
bars.

I have used a median-based approach. Minimum-based approaches better
model best-case execution time, as the lowest runtime corresponds to the one
with least interference. However, a central measure better reflects real-world use
cases. This approach is taken by SPEC [12]. Using a median-based approach
works under the assumption that distributions are unimodal. To verify this,
all plotted data points have been manually observed to adhere to a unimodal
distribution by observing cumulative frequency graphs. Data that showed bi-
modality were recollected.

Benchmarking data have been collected on a machine provided by the Com-
puter Labs. The machine runs Ubuntu 14.04 and has an Intel Core i5-5200U
CPU running at 2.20 GHz. The JVM is Oracle’s Java SE JVM. Benchmarking
has been performed with a compiler built from commit a14879b. This evalua-
tion focuses on a fixed version of MLC, so data collected for LNT have not been
used.

4.2 Execution Time
Execution time is a central goal of my project. Beyond this, I will explore how
individual passes contributed to speed-up and how they interact. MLC will
also be compared to other ML compilers.

Figures 4.1 and 4.2 show the effect of individual passes on execution time,
with and without the JIT enabled respectively. The benchmarks are discussed
in Section 3.5.

1Some analyses take too long to gather this much data. In these cases, error bars are the
first datum within the 15th percentile.

40

ali
gn

m
en

t

df
t

in
lin

in
g

kn
ut

h_
be

nd
ix lif
e

m
an

de
lb

ro
t

m
at

rix
_m

ul
tip

lic
at

ion ta
k

ut
ils

Benchmark

0.60
0.64
0.68
0.72
0.76
0.80
0.84
0.88
0.92
0.96
1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36

Re
la

tiv
e

Ex
ec

ut
io

n
Ti

m
e

(L
ow

er
 M

ea
ns

 S
pe

ed
up

)
Execution Time of Benchmarks with Individual Optimisations Enabled

Relative to an Unoptimised Run
copyprop
dse
inline

peephole
simplify
tce

Figure 4.1: Execution time of benchmarks with individual optimisations enabled
relative an unoptimised run. The further down a bar is, the more speed-up it
provided. This figure shows the contribution of optimisation passes with the
JIT enabled. The JVM masks several optimisations (performing them easily)
such as copy propagation and dead store elimination. Their full effects are not
seen here.

In Figure 4.1, the increase in execution time with tail-call elimination en-
abled for some benchmarks is particularly interesting. The JVM used on my
benchmarking machine is the Oracle Java SE JVM. In Figure 4.1, performance
decreases by approximately 10% and 30% for alignment and dft respectively.
Using a separate machine with the OpenJDK JVM, tail-call elimination in-
creases runtime performance of alignment by approximately 40%, and of dft
by approximately 15%. As a result, I have concluded this result is JVM spe-
cific. This is discussed more with reference to Figure 4.2 below. Here it is safe
to conclude that the Java SE JVM missed an optimisation.

The other feature that stands out from Figure 4.1 is the noise in the inlining
benchmark. The benchmark appears to exhibit intrinsically noisy behaviour,
possibly due to JVM optimisation decisions. However, there are cases where
noise is low enough to draw conclusions.

Several optimisations appear to have small effects in 4.1, such as copy
propagation in many benchmarks. This is because the JVM is able to perform
these optimisations easily in most cases. Further, the eliminated instructions in
these cases cost little per instruction on the JVM. These optimisations do have
noticeable positive effects. As can be seen in Figure 4.16, there are a number

41

ali
gn

m
en

t

df
t

in
lin

in
g

kn
ut

h_
be

nd
ix lif
e

m
an

de
lb

ro
t

m
at

rix
_m

ul
tip

lic
at

ion ta
k

ut
ils

Benchmark

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

Re
la
tiv

e
Ex

ec
ut
io
n
Ti
m
e
(L
ow

er
 M
ea

ns
 S
pe

ed
up

)
Execution Time of Benchmarks with Individual Optimisations Enabled

Relative to an Unoptimised Run (No JIT)
copyprop
dse
inline

peephole
simplify
tce

Figure 4.2: Execution time of benchmarks with individual optimisations enabled
relative to an unoptimised run without the JIT. The JIT has been disabled here.
This provides context of how much each optimisation pass helps individually
(instead of with JVM optimisation passes).

of copies being removed.

Figure 4.2 shows the direct effect of passes (without JVM optimisations).
Notice inlining and tce have negative effects. This results from the trade-off
made between curried function applications (removed) and pattern matching on
tuples (inserted). This trade-off is shown in Figure 4.3. This performance hit
does not make tce or inlining bad optimisations. tce provides expressivity.
We will see below inlining enables many further optimisations so inspecting
individual performance is not representative.

Another feature of note is how much peephole helps. The peephole
removes variable boxing and unboxing. This helps beyond removing slow code
manipulating the heap. It also vastly reduces the amount of garbage to collect.

In several cases, passes were written to complement each other. This was
briefly discussed with the phase-order problem in Section 3.3.7. Figure 4.42

shows optimisation passes interacting pairwise with each other. Notice the over-
lap of simplify and peephole in terms of what they optimise. This is because

2Some PDF viewers, such as Preview on Mac, fail to display this figure correctly. Adobe
Acrobat displays this figure correctly.

42

3 6 9 12 15 18
Number of arguments

0.2

0.4

0.6

0.8

1.0

Ti
m
e
(s
ec

on
ds

)
Time taken to call an N argument function 100,000 times

Curried
Tupled

Figure 4.3: Time taken to call an N argument function 100, 000 times.

simplify removes many structures that peephole can greatly simplify.
It is clear how much inlining benefits from the presence of other optimi-

sations. This is best understood by considering that inlining makes the code
messier. Unlike a human inlining a function, inline leaves redundant case
statements, introduces variable copies and so on. This behaviour creates oppor-
tunities for other optimisation passes.

The interaction of copyprop and dse is explained as dse removes initialising
stores to variables. When copyprop runs, there are fewer variables to initialise
so dse can do less.

simplify and copyprop also have some overlap. This is because simplify
removes some structures that generate variable copies copyprop could eliminate.

Finally, it is important to see how MLC compares to existing ML com-
pilers. This is shown in Figure 4.5. For the most part, relative performance is
clear. MLC outperforms MosML, but is outperformed by PolyML and SML/NJ.
MLton outperforms all by far.

This is due to more extensive optimisations and the performance benefits
of machine code over Java bytecode. I did not have time to implement many
optimisations (such as continuation-passing style) that I suspect would enhance
performance. Further, my tuple representation described in Section 3.2 trades
performance for flexibility. A tuple with a single initialising function call would
be more efficient. This was the right decision at the time due to rapid project
evolution. I suspect that some small tweaks could significantly increase perfor-

43

copyprop

dse

inline

peephole

simplify

tce

copyprop dse inline peephole simplify tce

B
a

s
e

 O
p

ti
m

is
a

ti
o

n

Additional Optimisation

Speed-up from running pairs of optimisations for Matrix Multiplication without JIT

'$map3' matrix rowheaders columnheaders using 1:2:3

-40

-30

-20

-10

 0

 10

 20

 30

 40

A
d

d
ti
o
n
a

l
s
p
e

e
d
-u

p
 w

h
e
n
 c

o
m

b
in

in
g
 o

p
ti
m

is
a
ti
o
n
s
 (

m
s
)

Figure 4.4: How passes interact pairwise for the matrix multiplication bench-
mark. Speed-up is measured relative to the sum of speed-up from both passes
individually. White indicates the passes are orthogonal. Blue indicates one pass
complements the other. Red indicates the passes overlap in their optimisations.
matrix multiplication was chosen to showcase this as all optimisations have
similar effect on execution time (see Figure 4.1). Asymmetry is due to noise.

mance.
perf has been used to gather hardware performance counters from bench-

marks. This allows detailed investigation of how passes interact with the
underlying microarchitecture. This is particularly important when the JVM’s
interpretation of instructions can be opaque. The goal of this discussion is
to explore the effect optimisations have on generated code rather than on
execution time. Further, as discussed above, the JIT interacts with programs
in difficult-to-analyse ways. For these reasons, this section focuses on data
collected without the JIT enabled.

Looking at Figure 4.6, we can see most optimisations reduce the number of
loads. This is unsurprising. As discussed previously, tce and inlining results
are explained by extra tuple pattern matches. The decrease in loads shown by
other optimisations is intuitive: each reduces the work to do by removing code
containing loads.

Optimisations that reduce the miss rate do so by removing heap references,
where loads are likely to miss. peephole reduces the number of boxed types
allocated on the heap. peephole has the largest effect due to sheer number of
boxes removed.

Arguably, the more interesting effects here are increased cache miss
rates from dse, copyprop and simplify. These increase the cache miss
rate because many of the removed loads are “easy” (they always hit). For
example, as discussed in Section 3.3.5, dse removes many unneeded variable

44

initialisations. All have the same constant stored into them. Loading this
constant many times results in cache hits from temporal locality. Likewise
for simplify, many eliminated regions of code have high temporal locality
(e.g. repeated loads of the constant 1). Likewise, copyprop removes many
references to local variables on the stack that have spatial locality. Elim-
inating these results increased cache miss rates. tce is a special case. As
discussed previously, it increases heap use, so loads and miss rate increase for
the same reason that peephole decreases the number of loads and the miss rate.

There are similar results in Figure 4.7. peephole removes heap-manipulating
code, which is evidently hard to issue out of order. tce has the inverse effect for
this reason. simplify removes tautological code, which is by nature extremely
easy to issue out of order. The copyprop and dse passes tend to remove paral-
lel code (e.g. variable initialisations and unchained copies) although copyprop
sometimes removes sequential copies.

The effect of inlining here is somewhat surprising, but is explained by the
lack of function calls. Although allocating tuples requires more stress on the
memory system, it is likely that fewer dependencies exist between instructions
without function calls.

There are some conclusions to be drawn here. This analysis helps classify
implemented optimisations into categories based on how they behave. These
graphs clarify simplify acts as expected, removing significant tautological code,
and dse removes the stores it is expected to eliminate. They allow for helpful
optimisation groupings. They allow for better understanding of what hardware
is most exercised under each transformation. Particularly with no clear one-
to-one mapping from bytecode instructions to machine code instructions, this
analysis helps us to understand what is and what is not useful.

45

alignment

dft

inlining

life

mandelbrotmatrix_multiplication
peek

tak

utils

Benchm
ark

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Execution Time (seconds)

MLC Failed
MLC (Optimised for Size) Failed

MosML Failed

Com
paring M

L Com
pilers: Execution Tim

e
M
LC

M
LC (Optim

ised for Size)
M
LC (Optim

ised for Speed)
M
Lton

M
osM

L
PolyM

L
SM

L/NJ

Figure 4.5: Comparing ML compilers in execution time. MosML fails
mandelbrot due to floating point overflow, which is treated as an exception.
MLC fails peek without tail-recursion elimination due to stack overflow. The
unoptimised run of MLC includes the peephole pass as discussed in the imple-
mentation.

ali
gn
m
en
t

df
t

in
lin
in
g

kn
ut
h_
be
nd
ix lif
e

m
an
de
lb
ro
t

m
at
rix
_m

ul
tip
lic
at
ion ta
k

ut
ils

Benchmark

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

Re
la
tiv
e
Nu

m
be
r o

f C
ac
he
 R
ef
er
en
ce
s

Number of L1 Data Cache Loads Relative to an Unoptimised Run (No JIT)
copyprop
dse
inline

peephole
simplify
tce

(a) Number of L1 data cache loads relative to an unoptimised run without the JIT.

ali
gn

m
en

t

df
t

in
lin

in
g

kn
ut

h_
be

nd
ix lif
e

m
an

de
lb

ro
t

m
at

rix
_m

ul
tip

lic
at

ion ta
k

ut
ils

Benchmark

0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175

Re
la

tiv
e

Ca
ch

e
M

iss
 R

at
e

L1 Data Cache Load Miss Rate Relative to an Unoptimised Run (No JIT)

copyprop
dse
inline

peephole
simplify
tce

(b) Data cache load miss rate relative to an unoptimised run without the JIT.

Figure 4.6: Relative L1 data cache misses under each optimisation. The load
miss rates should be interpreted with reference to the number of loads.

ali
gn

m
en

t

df
t

in
lin
in
g

kn
ut
h_
be

nd
ix lif
e

m
an

de
lb
ro
t

m
at
rix

_m
ul
tip

lic
at
ion ta
k

ut
ils

Benchmark

0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12

(R
el
at
iv
e)
 In

st
ru
ct
io
ns
 p
er
 C
lo
ck
 C
yc
le

Instructions per Clock Cycle Relative to an Unoptimised Run (No JIT)

copyprop
dse
inline

peephole
simplify
tce

Figure 4.7: Instructions per clock cycle relative to an unoptimised run for indi-
vidual optimisations. Benchmarks were run on a 4-way OoO processor. More
issued instructions means more ILP. Inlining is too noisy for meaningful ILP
measurements.

4.3 Compile Time
My project aims to provide a compiler fast enough to be usable. Figure 4.8
shows MLC achieves this. Compile times are large but not unheard of for ML
compilers (cf. MLton).

Compilers scale well across large projects where they can run on multiple files
individually and link results together. The Linux make [41] tool, for example,
takes advantage of this. Running multiple instances is a suitable way to increase
MLC’s throughput.

Beyond assessing benchmark compile times, I have attempted to ensure MLC
scales in different program features. Figures 4.9, 4.10, 4.11, 4.12, and 4.13 show
this has been achieved (note these do not include assembler and linker times).

In all cases, the majority of time is spent in the AST phase. Within this,
typechecking dominates. In large part this is due to late bug fixes. I discov-
ered unifiers must be applied at unanticipated places within a program. More
importantly, some unifiers are applied many times.

Figure 4.14 shows how time is spent compiling benchmarks. This shows that
the assembler and linker do not excessively add compilation time.

4.3.1 Typechecker
To simplify my approach (described in Section 3.1.1), I implemented a single
directional map. This means unifications walk the entire type environment. A
fix I anticipate would vastly reduce compile time is using another hash map
from type variables to the set of variables that have types containing this
particular type variable.

The type checker behaves asymptotically as expected (although it reaches
asymptotic limits faster than other compilers). The compilation time of a pro-
gram with an exponential number of type variables is shown in Figure 4.15.

49

alignment

dft

inlining

life

mandelbrotmatrix_multiplication
peek

tak

utils

Benchm
ark

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2

Compile Time (seconds)
Com

paring M
L Com

pilers: Com
pile Tim

e
M

LC
M

LC (Optim
ised for Size)

M
LC (Optim

ised for Speed)
M

Lton

M
osM

L
PolyM

L
SM

L/NJ

Figure 4.8: Comparing ML compilers in compilation time. The similarity to
MLton reflects the similar goals. Both are whole-program optimisers intended
to produce a single executable.

0 20 40 60 80
Number of 'val' declarations

0

100

200

300

400

500

600

700

800

900

Co
m
pi
le
 T
im

e
(m

s)

Compilation Time vs Number of vals
Time spent in AST Representation
Time spent in TIR Representation
Time spent in ByteR Representation

(a) Compile time without optimisations.

0 20 40 60 80
Number of 'val' declarations

0

200

400

600

800

Co
m
pi
le
 T
im

e
(m

s)

Compilation Time vs Number of vals
Time spent in AST Representation
Time spent in TIR Representation
Time spent Optimising
Time spent in ByteR Representation

(b) Compile time with optimisations.

Figure 4.9: MLC’s compile time against the number of val declarations.

0 20 40 60 80
Number of function applications

0

250

500

750

1000

1250

1500

1750

2000

Co
m

pi
le

 T
im

e
(m

s)

Compilation Time vs Number of applications
Time spent in AST Representation
Time spent in TIR Representation
Time spent in ByteR Representation

(a) Compile time without optimisations.

0 20 40 60 80
Number of function applications

0

250

500

750

1000

1250

1500

1750

2000

Co
m

pi
le

 T
im

e
(m

s)

Compilation Time vs Number of applications
Time spent in AST Representation
Time spent in TIR Representation
Time spent Optimising
Time spent in ByteR Representation

(b) Compile time with optimisations.

Figure 4.10: MLC’s compile time against the number of function applications.
Compile time increases drastically with optimisations due to inlining decisions.
These result in the internal representation becoming around 300% bigger. This
is found comparing printed TIR file length (with --dump-inline) excluding type
environments and debugging messages. Most redundant internal structures are
later eliminated, leaving a 5% executable size increase.

0 20 40 60 80
Number of expressions

0

500

1000

1500

2000

Co
m
pi
le
 T
im

e
(m

s)

Compilation Time vs Number of expressions
Time spent in AST Representation
Time spent in TIR Representation
Time spent in ByteR Representation

(a) Compile time without optimisations.

0 20 40 60 80
Number of expressions

0

500

1000

1500

2000

Co
m

pi
le

 T
im

e
(m

s)

Compilation Time vs Number of expressions
Time spent in AST Representation
Time spent in TIR Representation
Time spent Optimising
Time spent in ByteR Representation

(b) Compile time with optimisations.

Figure 4.11: MLC’s compile time against the number of expressions.

0 20 40 60 80
Number of 'fun' declarations

0

200

400

600

800

1000

1200

1400

Co
m

pi
le

 T
im

e
(m

s)

Compilation Time vs Number of functions
Time spent in AST Representation
Time spent in TIR Representation
Time spent in ByteR Representation

(a) Compile time without optimisations.

0 20 40 60 80
Number of 'fun' declarations

0

200

400

600

800

1000

1200

1400

Co
m

pi
le

 T
im

e
(m

s)

Compilation Time vs Number of functions
Time spent in AST Representation
Time spent in TIR Representation
Time spent Optimising
Time spent in ByteR Representation

(b) Compile time with optimisations.

Figure 4.12: MLC’s compile time against the number of functions.

0 20 40 60 80
Number of nested 'let' declarations

0

200

400

600

800

1000

1200

1400

Co
m

pi
le

 T
im

e
(m

s)

Compilation Time vs Number of nested let satements
Time spent in AST Representation
Time spent in TIR Representation
Time spent in ByteR Representation

(a) Compile time without optimisations.

0 20 40 60 80
Number of nested 'let' declarations

0

200

400

600

800

1000

1200

1400

Co
m

pi
le

 T
im

e
(m

s)
Compilation Time vs Number of nested let satements

Time spent in AST Representation
Time spent in TIR Representation
Time spent Optimising
Time spent in ByteR Representation

(b) Compile time with optimisations.

Figure 4.13: MLC’s compile time against number of nested let statements.
This increases quickly due to a quadratic number of unifications required and
the high overhead of each unification. In the optimised version, most code is
removed by the simplify optimisation passes so little bytecode is produced.

ali
gn
m
en
t

df
t

in
lin
in
g

kn
ut
h_
be
nd
ix lif
e

m
an
de
lb
ro
t

m
at
rix
_m

ul
tip
lic
at
ion

pe
ek ta
k

ut
ils

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n
of
 C
om

pi
le
 T
im
e

Compile Time Breakdown in MLC

Verification Lower Optimisations Assembler Linker

Figure 4.14: How MLC’s compilation time is spent when compiling benchmarks.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
log2(type variables)

0

10000

20000

30000

40000

Co
m
pi
le
 T
im

e
(m

s)

Compile Time vs log2(type variables)
MLC
MLton
MosML

Figure 4.15: MLC’s typechecker compared to MosML and MLton. Note scaling
is the same, but happens sooner with MLC. This is because MLC stores a large
number of unification variables past their lifetimes. This issue could be resolved
by removing unneeded variables from unifiers, but would require bi-directional
hash maps as discussed in Section 4.3.1 to do efficiently.

4.4 Code Size
Generated code size is an extremely important metric. Beyond distribution of
code over low bandwidth links, which is (arguably) becoming less important,
instruction caches are often not big enough for modern programs. A typical
instruction cache is now 32 kB which can only hold 8192 fixed length 32 bit
instructions.

This instruction cache limitation typically means code size is free until it
isn’t. For many embedded targets, executable size is significantly more impor-
tant than executable speed. Traditionally, this is not the domain of functional
languages but with suitable support that could change.

It is instructive to analyse effects of individual passes on code size. Fig-
ure 4.16 shows this. simplify has more effect on code size than on execution
time time (cf. Figure 4.2) because many structures it eliminates are easy for
the JIT to optimise away (for example the code in Figure 3.19) since they do
not involve function calls. tce results in an increase in code size because the
algorithm takes the function body and puts it inside a loop (see Section 3.3.1).

Finally, Figure 4.17 compares the size of generated executables between com-
pilers. MLC performs well for two reasons. First, MLC benefits from the JVM’s
compact 8 bit instruction representation. MosML employs a similarly compact
representation3 to achieve its even better code size [42]. When run to produce a
native executable, size regresses close to MLton. Note SML/NJ does not link the
standard libraries, and requires the program to be loaded back into SML/NJ.

MLC’s optimise-for-size option (--optimize-size) appears to have little
effect over normal optimisation (--optimize) here. While this is true, the
option has been introduced as it is unjustifiable to perform optimisations like
inlining if small executable size is the aim.

3MosML benefits more than MLC as the MosML representation is designed for SML.

56

ali
gn
m
en
t

df
t

in
lin
in
g

kn
ut
h_
be
nd
ix lif
e

m
an
de
lb
ro
t

m
at
rix
_m

ul
tip
lic
at
ion ta
k

ut
ils

Benchmarks

0.888
0.896
0.904
0.912
0.920
0.928
0.936
0.944
0.952
0.960
0.968
0.976
0.984
0.992
1.000
1.008
1.016
1.024
1.032
1.040
1.048

Co
de

 S
ize

 (B
yt
es
)

Code Size under Individual Optimizations
copyprop
dse
inline

peephole
simplify
tce

Figure 4.16: Code size under individual optimisations of generated executables.

alignment

dft

inlining

life

mandelbrotmatrix_multiplication
peek

tak

utils

Benchm
ark

0
25000
50000
75000

100000
125000
150000
175000
200000
225000
250000
275000
300000
325000
350000
375000
400000
425000
450000
475000
500000

Executable Size (bytes)
Com

paring M
L Com

pilers: Executable Size
M
LC

M
LC (Optim

ised for Size)
M
LC (Optim

ised for Speed)
M
Lton

M
osM

L
PolyM

L
SM

L/NJ

Figure 4.17: Comparing code size of generated executables for various ML com-
pilers. There were small differences in source code to account for different entry
points.

4.5 Additional Optimisations
Part of my evaluation evaluates generated assembly to determine which further
optimisations are likely to be profitable. In addition to proposing several op-
timisations that have been mentioned previously in this dissertation, I propose
the following optimisations would be useful:

Code Motion in the ByteR stage: The peephole pass removes most box-
ing. Some boxing and unboxing remains in if statements, e.g.

1 if (i == 0) {
2 a = 1;
3 b = new Integer(a);
4 } else {
5 a = 0;
6 b = new Integer(a);
7 }
8 c = b.intValue ()

This could be removed with code motion, moving boxing out of the if
statement, and using the peephole pass to clean up the adjacent box and
unbox. I anticipate a 5% performance gain across my benchmarks.

Variable Merging: Variables never used during the same function call may
share stack locations. Examples are variables inside let declarations on
different branches of an if statement, or variables in different pattern
matches. I expect similar impact to copyprop.

4.6 Summary
This section contains an analysis of the performance of MLC in three facets:
execution time, compilation time and executable size. In all these facets, MLC
has been shown to have acceptable performance.

We have seen the impact of each individual part of MLC. This pass-by-pass
breakdown reveals many interesting effects that have the potential to influence
further work. Data that provided a basis for decisions during the project have
been presented. Much of the data presented here was collected in preliminary
form throughout the project implementation. For example, the design of the
--optimize-size flag was based entirely off data in Figure 4.16.

59

Chapter 5

Conclusion

My implementation of an optimising ML compiler works well. The optimi-
sations produce noticeable effects on generated bytecode and fit nicely in the
compilation pipeline, reducing complexity of tricky compilation stages.

The end product is usable and shrink-wrapped in a shell script to hide com-
plex linking stages. The produced jar files are efficient and comparable in speed
to current ML compilers.

While understanding the semantics of SML, I identified several issues with
SML/NJ. Two of these were already reported, but I reported four additional
issues [43, 44, 45, 46].

The iterative development approach I ultimately used was suitable for the
task. However, there were cases where it was important to have more structure
to my development (such as determining how SML language features should be
represented on the JVM). In these cases, I found it better to approach the task
with a waterfall methodology, preparing requirements documents as appropri-
ate.

I was able to stick to my timetable almost to the day. I used my first
slack week over Christmas early as I struggled to obtain remote access to my
benchmarking machine.

5.1 Further Work
In retrospect, I omitted some optimisations that I subsequently considered to
be important. For example, my proposal did not plan to implement copy prop-
agation. As discussed in Section 2.3, I found it difficult to anticipate what
MLC would generate suitable for removal (e.g. variable copies discussed in Sec-
tion 3.1.7). I would have allocated an extension with an unspecified optimisation
to be implemented if MLC had generated code that I had not expected, as was
the case with copy propagation.

With an eye to the future, some time-efficient feature extensions to imple-
ment would allow a direct interface to Java standard libraries. I anticipate a

60

casting based approach would not be difficult, although the libraries would be
limited to returning primitives, strings or boxed primitives. Another easy ex-
tension with potential use would be allowing interfacing with Java code. This
would require some simple changes to the name uniquifier. The JVM handles
debugging information as part of the specification. Implementing this would be
extremely useful and not particularly challenging. Parallelisation of generated
code is another potential optimisation. This is a difficult task, but GHC has
made some moderately successful approaches that provide a starting point [47].
Consideration of optimisations to aid the MLton benchmarks would be useful.
Finally, implementing a larger language subset would be easy and aid expres-
siveness greatly.

5.2 Summary
I have demonstrated that pure functional languages can be compiled to the
JVM. It would be interesting to know if MLC could easily be extended to
provide a fully featured ML compiler. As the introduction outlines, I expect a
fully featured SML-to-Java bytecode compiler would drive other SML compilers
to provide easier interoperability with popular languages and other features
provided by MLC. My compiler could provide easy integration with large Java
projects, potentially providing good reason for companies to use SML in the
real world. The framework I have provided should be easy to adapt to a new
functional language, which can provide a base for functional languages to be
implemented on the JVM much like LLVM provides a base for new imperative
languages to be implemented.

Overall, this project has been a success. As specified in my success criteria,
I implemented a compiler with multiple optimisations, and I have compared
the effects of those optimisations in many different dimensions. I can see per-
formance improvements in the region of 30%.1 My project proposal originally
asked, “Are optimisations helpful beyond existing JVM capabilities?” This
project shows that the answer to this question is a resounding yes.

1This figure includes the peephole pass, so is not reflected in Figure 4.5. It is best seen in
Figure 4.1.

61

Bibliography

[1] SML/NJ Project. Standard ML of New Jersey Home Page. https://www.
smlnj.org/smlnj.html, 1996. Online; Accessed 2017-12-31.

[2] Michael Norrish. New year musing; workflow, and MoscowML
pains. https://sourceforge.net/p/hol/mailman/message/5862941/,
2007. Online; Accessed 2018-01-12.

[3] Raja Vallée-Rai. SOOT: A JAVA BYTECODE OPTIMIZATION FRAME-
WORK. 2000. School of Computer Science, McGill University, Montreal.

[4] John Hughes. Research Topics in Functional Programming. Addison-
Wesley, 1990.

[5] École Polytechnique Fédérale de Lausanne. Introducing Scala. http://
www.scala-lang.org/old/node/25.html, 2012. Online; Accessed 2018-
03-12.

[6] Persimmon IT. The MLj Compiler Home Page. http://www.dcs.ed.ac.
uk/home/mlj/doc/index.html. Online; Accessed 2017-12-31.

[7] LLVM Project. Expressive Diagnostics. http://clang.llvm.org/
diagnostics.html, 2014. Online; Accessed 2018-03-12.

[8] Robin Milner, Mads Tofte, Robert Harper, David MacQueen. The Defini-
tion of Standard ML (Revised). The MIT Press, 1997.

[9] Oracle America. Limited License Grant. https://docs.oracle.com/
javase/specs/jvms/se9/html/spec-license.html", 2017. Online; Ac-
cessed 2018-03-29.

[10] Simon Hammond, David Lacey. Loop Transformations in the Ahead-of-
Time optimization of Java Bytecode. Compiler Construction, 2006. Lecture
Notes in Computer Science, vol 3923.

[11] perf(1) perf Manual. Accessed; 2018-02-01.

[12] John Henning. Benchmarks; good, bad, difficult and standard. https://
spec.org/cpu2017/Docs/overview.html#AboutBenchmarks, 2017. On-
line; Accessed 2018-03-12.

[13] Jason Zaugg, P. Simon Tuffs. SBT One JAR. https://github.com/sbt/
sbt-onejar, 2018. Online; Accessed 2018-03-18.

62

https://www.smlnj.org/smlnj.html
https://www.smlnj.org/smlnj.html
https://sourceforge.net/p/hol/mailman/message/5862941/
http://www.scala-lang.org/old/node/25.html
http://www.scala-lang.org/old/node/25.html
http://www.dcs.ed.ac.uk/home/mlj/doc/index.html
http://www.dcs.ed.ac.uk/home/mlj/doc/index.html
http://clang.llvm.org/diagnostics.html
http://clang.llvm.org/diagnostics.html
https://docs.oracle.com/javase/specs/jvms/se9/html/spec-license.html"
https://docs.oracle.com/javase/specs/jvms/se9/html/spec-license.html"
https://spec.org/cpu2017/Docs/overview.html#AboutBenchmarks
https://spec.org/cpu2017/Docs/overview.html#AboutBenchmarks
https://github.com/sbt/sbt-onejar
https://github.com/sbt/sbt-onejar

[14] Jackson Woodruff. MLC. https://github.com/j-c-w/mlc. Online; Ac-
cessed 2017-12-31.

[15] Travis CI. Travis MLC. https://travis-ci.org/j-c-w/mlc. Online;
Accessed 2017-12-31.

[16] Scala Project. Scala Parser Combinators. https://github.com/scala/
scala-parser-combinators. Online; Accessed 2017-12-31.

[17] Scallop. A Scala CLI Parsing Library. https://github.com/scallop/
scallop. Online; Accessed 2017-12-31.

[18] Krakatau. Java Decompiler, Assembler and Disassembler. https://
github.com/Storyyeller/Krakatau. Online; Accessed 2017-12-31.

[19] Andrew Cumming. Diversion: Mandelbrot sets. http://www.soc.napier.
ac.uk/course-notes/sml/mandel.htm. Online; Accessed 2017-12-31.

[20] ”LLVM Project”. LNT – LLVM Performance Tracking Software. http:
//llvm.org/docs/lnt/index.html, 2018. Online; Accessed 2018-05-11.

[21] Thomas Williams, Colin Kelley and many others. gnuplot(1) General Com-
mands Manual. Accessed; 2018-05-12.

[22] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In
Science & Engineering, 9(3):90–95, 2007.

[23] Oracle. jar – The Java Archive Tool. https://docs.oracle.com/javase/
7/docs/technotes/tools/windows/jar.html, 2017. Online; Accessed
2018-01-12.

[24] Andreas Rossberg. Standard ML Grammar. https://people.mpi-sws.
org/˜rossberg/sml.html. Online; Accessed 2017-12-31.

[25] Free Software Foundation. FAQs about GNU Licenses. https://www.gnu.
org/licenses/gpl-faq.en.html#GPLPlugins. Online; Accessed 2017-12-
31.

[26] Curtis Dunham, Matthew Fluet. MLton Performance. http://mlton.
org/Performance, 2017. Online; Accessed 2018-01-12.

[27] Luis Damas, Robin Milner. Principal type-schemes for function programs.
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 207–212, 1982.

[28] Jessica Pacqette. Interprocedural MIR-level Outlining Pass. http:
//lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html,
2016. Online; Accessed 2018-03-12.

[29] Luc Maranget. Compiling Pattern Matching to Good Decision
Trees. http://moscova.inria.fr/˜maranget/papers/ml05e-maranget.
pdf, 2008. Online; Accessed 2017-12-31.

63

https://github.com/j-c-w/mlc
https://travis-ci.org/j-c-w/mlc
https://github.com/scala/scala-parser-combinators
https://github.com/scala/scala-parser-combinators
https://github.com/scallop/scallop
https://github.com/scallop/scallop
https://github.com/Storyyeller/Krakatau
https://github.com/Storyyeller/Krakatau
http://www.soc.napier.ac.uk/course-notes/sml/mandel.htm
http://www.soc.napier.ac.uk/course-notes/sml/mandel.htm
http://llvm.org/docs/lnt/index.html
http://llvm.org/docs/lnt/index.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jar.html
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jar.html
https://people.mpi-sws.org/~rossberg/sml.html
https://people.mpi-sws.org/~rossberg/sml.html
https://www.gnu.org/licenses/gpl-faq.en.html#GPLPlugins
https://www.gnu.org/licenses/gpl-faq.en.html#GPLPlugins
http://mlton.org/Performance
http://mlton.org/Performance
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
http://moscova.inria.fr/~maranget/papers/ml05e-maranget.pdf
http://moscova.inria.fr/~maranget/papers/ml05e-maranget.pdf

[30] Scott Owens, Michael Norrish, Ramaba Kumar, Magnus O. Mygreen, Yong
Kiam Tan. Verifying Efficient Function Calls in CakeML. Proc. ACM
Program. Lang., 2017. Article 18.

[31] Matthew Fluet. SXMLSimplify. http://mlton.org/SXMLSimplify. On-
line; Accessed 2017-12-31.

[32] Manuel Lopez Ibanez et al. GCC Wiki Speedup Areas. https://gcc.gnu.
org/wiki/Speedup_areas, 2015. Online; Accessed 2018-03-12.

[33] Timothy Jones. Optimising Compilers. http://www.cl.cam.ac.uk/
teaching/1718/OptComp/notes.pdf, 2018. Online; Accessed 2018-03-18.

[34] Matthew Fluet, Henry Cejtin, Suresh Jagannathan, Stephen Weeks. MLton
SSA Simplify. https://github.com/MLton/mlton/blob/master/mlton/
ssa/simplify.fun, 2017. SML Source Code. Online; Accessed 2018-01-01.
Commit a2b9f79.

[35] Robert Love. taskset(1) User Commands Manual. Accessed; 2018-05-11.

[36] T.F. Smith, M.S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[37] Lawrence C. Paulson. ML For the Working Programmer. Cambridge Uni-
versity Press, New York, NY, USA, 2nd edition, 1996.

[38] Donald Knuth, Peter Bendix. Simple Word Problems in Universal Alge-
bras’. 1983.

[39] Martin Gardner. Mathematical games. Scientific American, 223(4):120–
123, 1970.

[40] J. McCarthy. An interesting lisp function. Lisp Bull., (3):6–8, December
1979.

[41] Dennis Morse, Mike Frysinger, Roland McGrath, Paul Smith. make(1)
User Commands Manual. Accessed; 2018-02-01.

[42] Sergei Romanenko, Claudio Russo, Peter Sestoft. Moscow ML Owner’s
Manual, 2000.

[43] Jackson Woodruff. Compiler crash when handling large reals.
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=
detail&aid=191&group_id=33&atid=215. Online; Accessed 2017-12-31.

[44] Jackson Woodruff. Missing warning for nonexhaustive valbind pat-
terns. http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?
func=detail&aid=188&group_id=33&atid=215. Online; Accessed 2017-
12-31.

[45] Jackson Woodruff. Unexpected exception in SML/NJ with invalid list pat-
tern match. http://smlnj-gforge.cs.uchicago.edu/tracker/index.
php?func=detail&aid=190&group_id=33&atid=215. Online; Accessed
2017-12-31. Closed as duplicate then reopened and accepted as a bug.

64

http://mlton.org/SXMLSimplify
https://gcc.gnu.org/wiki/Speedup_areas
https://gcc.gnu.org/wiki/Speedup_areas
http://www.cl.cam.ac.uk/teaching/1718/OptComp/notes.pdf
http://www.cl.cam.ac.uk/teaching/1718/OptComp/notes.pdf
https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify.fun
https://github.com/MLton/mlton/blob/master/mlton/ssa/simplify.fun
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=detail&aid=191&group_id=33&atid=215
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=detail&aid=191&group_id=33&atid=215
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=detail&aid=188&group_id=33&atid=215
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=detail&aid=188&group_id=33&atid=215
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=detail&aid=190&group_id=33&atid=215
http://smlnj-gforge.cs.uchicago.edu/tracker/index.php?func=detail&aid=190&group_id=33&atid=215

[46] Jackson Woodruff. Typechecker hangs with large number of curried
arguments. https://smlnj-gforge.cs.uchicago.edu/tracker/?func=
detail&atid=215&aid=197&group_id=33. Online; Accessed 2018-03-25.

[47] Tim Harris, Simon Marlow, Simon Peyton Jones. Haskell on a Shared-
Memory Multiprocessor. ACM SIGPLAN workshop on Haskell, pages 49–
61, 2005.

65

https://smlnj-gforge.cs.uchicago.edu/tracker/?func=detail&atid=215&aid=197&group_id=33
https://smlnj-gforge.cs.uchicago.edu/tracker/?func=detail&atid=215&aid=197&group_id=33

Appendices

66

Appendix A

Inlining Performance
Profiling in Java

FunctionInterface.java
1 public interface FunctionInterface {
2 public Object apply(Object arg);
3 }

InlineExample.java
1 import java.util.Random;
2
3 public class InlineExample {
4 public static void main(String [] args) {
5 // Fill an array with random data. This stops the

JVM from doing
6 // value speculation.
7 Random rand = new Random ();
8 int[] array = new int[100000000];
9 for (int i = 0; i < array.length; i ++) {

10 array[i] = rand.nextInt ();
11 }
12
13 long startTime = System.currentTimeMillis ();
14 int sum1 = testNoInline(array);
15 long noInlineEndTime = System.currentTimeMillis ();
16 int sum2 = testTraditionalFunCall(array);
17 long traditionalEndTime = System.currentTimeMillis

();
18 int sum3 = testInlined(array);
19 long endTime = System.currentTimeMillis ();
20 // No Inline times

67

21 System.out.print(Long.toString(noInlineEndTime -
startTime) + ",");

22 // Traditional Call times
23 System.out.print(
24 Long.toString(traditionalEndTime -

noInlineEndTime) + ",");
25 // Inlined Times
26 System.out.print(Long.toString(endTime -

traditionalEndTime));
27 }
28
29 public static int testNoInline(int[] array) {
30 int sum = 0;
31 for (int i = 0; i < array.length; i ++) {
32 // This function creation pattern represents how

functions
33 // are to be represented in my compiler.
34 Fuction fun = new Fuction(sum);
35 sum = (Integer) fun.apply(array[i]);
36 }
37
38 return sum;
39 }
40
41 public static int testInlined(int[] array) {
42 int sum = 0;
43 for (int i = 0; i < array.length; i ++) {
44 sum += (Integer) array[i] + (Integer) 1;
45 }
46
47 return sum;
48 }
49
50 public static int testTraditionalFunCall(int[] array

) {
51 int sum = 0;
52 for (int i = 0; i < array.length; i ++) {
53 sum += sumFun(sum , array[i]);
54 }
55
56 return sum;
57 }
58
59 public static int sumFun(Integer i, Integer j) {
60 return i + j;
61 }
62 }

68

63
64 class Fuction implements FunctionInterface {
65 Object arg;
66
67 public Fuction(Object arg) {
68 this.arg = arg;
69 }
70
71 public Object apply(Object i) {
72 return (Integer) i + (Integer) this.arg;
73 }
74 }

69

Appendix B

Scala Garbage Collector

The JVM garbage collector (used by Scala) does not detect dead variables within
functions. This is problematic for compilers with immutable tree representations
that create instances of this tree many times but maintain references to old
trees in a top level function. The following examples demonstrate this (consider
LargeObject a program to be compiled).

AllocMany.java
1 /* An example of the Java Garbage collector failing
2 * for many large structures.
3 *
4 * Build as:
5 *
6 * javac AllocMany.java
7 *
8 * run as:
9 *

10 * java -Xmx5m AllocMany
11 *
12 * An exception is thrown attempting to allocate ’l4’
13 * due to a lack of heap space (even though l1, l2
14 * and l3 could all be collected , the JVM does not
15 * notice this).
16 */
17 public class AllocMany {
18 public static void main(String [] args) {
19 LargeObject l1 = new LargeObject ();
20 LargeObject l2 = new LargeObject ();
21 LargeObject l3 = new LargeObject ();
22 LargeObject l4 = new LargeObject ();
23 }
24 }
25
26 class LargeObject {

70

27 int member [];
28 public LargeObject () {
29 member = new int[500000];
30 }
31 }

AllocSingle.java
1 /* Compile and run identically to AllocMany.java.
2 *
3 * This example does not crash due to lack of heap
4 * space.
5 */
6 public class AllocSingle {
7 public static void main(String [] args) {
8 LargeObject l1 = new LargeObject ();
9 }

10 }
11
12 class LargeObject {
13 int member [];
14 public LargeObject () {
15 member = new int[500000];
16 }
17 }

71

Computer Science Tripos – Part II – Project Proposal

An optimising compiler for ML

J. Woodruff, Magdalene College
Originator: J. Woodruff

May 11, 2018

Project Supervisor: Dr T Jones

Director of Studies: Dr J Fawcett

Project Overseers: Hatice Gunes & Robert Watson

Introduction

ML is not regarded as a particularly performant programming language. However, with
refs stripped out, there is no reason it should be less amenable to optimisation than, say,
Haskell, which is regularly regarded as a performant functional language.

This project aims to explore what could be done to make SML pereformant on the JVM.
I intend to first develop a compiler for a subset of ML to Java bytecode and then write
optimisations for this compiler. To goal is to analyse why performance improves (or does
not improve), and to find possible sources of additional performance.

Java bytecode is again not highly regarded for its performance characteristics (particularly
when one disables JIT for more understandable benchmark results). I have chosen the
JVM as a target due to its simplicity, but a central idea underlying this project is that
compiling to the JVM is not significantly conceptually different from compiling to native
code.

The rest of this document details my ideas and how they are to be achieved.

Starting point

I intend to write the project in Scala. I already have some experience in Scala. (I wrote
my A-Level project in it.) Further, there is a parser-generator library for Scala for which
I have verified the suitability for use. I also intend to build on what is already provided
in the Scala standard library (for file IO etc).

My project will also involve some Python for testsuite scripts and benchmarking. I have
some experience with Python. (Again, it was the language taught for my A-Level course).

I have looked through the Optimizing Compilers (Part II) course.

My compiler will compile to JVM bytecode. A project by the name of ‘Krakatau’ will be
used for the assembler. This will not constitute part of my project. It will be treated as
a separate tool. Again, I have verified that this assembler is suitable for the task.

1

Part of my evaluation is to be done with LNT (LLVM Nightly Testing), which is a project
that offers performance tracking over time. I am familiar with the idea of the LNT project
from my summer internship.

Lastly, I will use Git and sbt (simple build tool) to manage the complexity of the project.

Resources required

Development for this project will be done on my own laptop that runs Ubuntu 17.04. It
has 8 GB of RAM and a quad-core Intel i5-5200U CPU running at 2.20GHz. Backup will
be done using a GitHub repository. Should my laptop fail, I will use the MCS machines
(installing the required development tools locally) until I can source a replacement.

I require non-shared access to a machine to do the benchmarking. I require a lab account
for this, and Dr Jones has agreed to sponsor this.

Work to be done

The project breaks down into the following sub-projects:

1. The construction of a working ML compiler for the subset defined below.

This is broken into:

(a) A parser, provided by a parser generator in Scala. I will write the description
of the grammar for this.

The abstract syntax tree generated will be structure for structure identical to
SML.

(b) A type checking pass. I will implement the Hindley-Milner type checking al-
gorithm as is standard for ML.

(c) A conversion pass into an intermediate format suitable for analysis. This lan-
guage will be similar to the original abstract syntax tree.

(d) A lowering pass to convert this into a format close to JVM assembly.

A key parts of this will be to convert functional representations into object
oriented representations.

Roughly, each JVM instruction will correspond to one node in the (flat) tree
at this point.

2. Construction of essential testing infrastructure. Namely, a test suite and an infras-
tructure for benchmarking.

3. Writing relevant and useful benchmarks. In early Michaelmas, I intend to write
a small number of micro benchmarks that solve relevant, not completely trivial
problems amenable to being benchmarks.

These benchmarks are to be constructed in a manner that reflects my optimisations.

2

4. A range of optimisations. These are detailed in the plan.

Since the implementation is in Scala, my design will feature object-oriented design prin-
ciples. Notably, this means that the various intermediate representations will be class
hierarchies rather than data types (such as in Tim Griffin’s compilers course).

The subset of ML I intend to compile includes functions and higher-order functions. I
will drop other language features to make time for optimisations.

Standard libraries will be provided as needed for the benchmarks.

For the sake of variety of experience and to make my project closer to a general optimizing
compiler rather than a compiler that only optimizes a particular case, I have selected
multiple optimisations rather than focusing on one.

Methodology

I will use a waterfall methodology with feedback.

The waterfall methodology suits this project because it can be compartmentalised well,
with each pass being treated as its own small waterfall.

I intend to use the feedback for situations in which subsequently implemented passes
demand features that were not originally considered (obviously I want to keep this to a
minimum, but I do believe that such situations will arise).

Success criteria

I will consider this project a success if I successfully implement a compiler that performs
some optimisations. I will evaluate these by either examining why they increase perfor-
mance or why they are not behaving as expected. This performance analysis will be done
using multiple microbenchmarks. Microbenchmarks used will be designed to solve actual
problems. Some will be written in a style designed to showcase the optimizations I have
written and others will be written in a more generic style. I will make some use of very
constructed benchmarks (not solving a problem, but only demonstrating an optimization)
to either demonstrate the maximum potential of each optimization or to really drill down
on why things aren’t performing better.

Compilation time is not a central aim of the project, but it is relevant to the extent that
the compiler must be useable.

My core deliverables will therefore be a working compiler with at least one optimisation
that I can analyse. I fully intend to implement more optimisations unless things go badly
wrong.

3

Risks and mitigation

The biggest risk is that the compiler itself doesn’t work and that I spend more time on
that than planned. In this case, I consider that a peephole pass will be part of my core
deliverables (This is chosen as I believe it will yield the most interesting analysis of why
or why not performance has increased.)

Another risk is that the libraries I am relying on fail. If the parser-generator does not
work, I will push the entire project back to re-implement the first work package in a
different parser-generator. If the assembler fails, there is another (with a not identical,
but similar structure) that I will try. If this also fails, then I will have to make drastic
changes to allow time to do the assembly myself (possibly as modifications to Krakatau)
with significant project delays. Should LNT fail, I will create the relevant graphs by hand
(I will still have collected the benchmarking data).

Possible extensions

These extensions were selected as further optimisation passes that I believe will result in
performance gains. They were also selected as optimisations I am interested in imple-
menting. They are listed in order of preference. However, I may change this if I notice
particular compiler behaviours that make some optimisations more profitable than others
(such as if I notice my compiler is generating a lot of dead code, then implementing the
dead code elimination pass will be ranked higher up).

1. Function specialization. Haskell specialization passes involve partially evaluating
functions with case statements at compile time.

The same technique can be used on the JVM, which has instructions specifically
for the Java primitive types, to convert generic functions into specialised versions
of functions that do not require method calls for every operation.

I estimate that this will take about a week. It may or may not be applicable
depending on exactly how my lowering pass is written.

2. Simplification of maths. Like the peephole pass, this is focused on creating a frame-
work and adding a few examples. (e.g. transforming divisions by 2n into shifts.)

I expect this to take about a week.

3. Dead code elimination.

I expect this to take a week. An implementation of DCE will be intended to clean
up after other passes of my compiler rather than as a general DCE pass. Because it
will only be expected to work in special cases, the time allocated to implement this
is less than I would allocate for a full DCE pass.

4. Constant propagation.

I expect this to take two weeks.

5. Partial inlining of recursive functions. This is an optimisation in which recursive
functions are inlined once. This helps future passes work better.

4

I expect this to take a week.

6. Common subexpression elimination.

I expect this to take two weeks.

Timetable

1. 04 Oct – 17 Oct Read about the JVM, Krakatau formatting and SML. Write the
auxiliary parts of the system (test suite scripts and benchmarking scripts).

These tasks were chosen for these weeks because they are roughly independent of
this document.

The main deliverable here is this project proposal.

2. 18 Oct – 31 Oct Begin the compiler part of the project. I expect to have the
frontend finished, and the type checking pass completed.

The deliverable during this slot is a working frontend type checking pass. This is to
be verified by inspecting dump files from my compiler.

3. 1 Nov – 14 Nov During these weeks my lecture load begins to decrease.

I expect to implement the first lowering pass, converting between my SML-like IR
and my optimisation IR.

I also expect to plan out in detail how the second lowering pass will work. This will
involve looking into the JVM assembler format in detail.

There are two deliverables for this work package. I will verify that my first lowering
pass works as intended. I also intend to create a document outlining my ideas on
the mapping between my IR and the Java bytecode. The purpose of this document
is to get advice from Dr Jones on things to be wary of in the next work package. It
also exists as a design guide for the work package the following weeks.

4. 15 Nov – 28 Nov During these weeks I intend to begin the construction of the
last phase of the compilation. This will involve the lowering from my intermediate
representation into a representation suitable for direct output to JVM bytecode.

By the end of this work package, I expect to have compilation working for a subset
of my chosen language subset. Namely, I expect to have simple functions (with only
one case), case statements compiling and have set up the standard libraries I need.

5. 29 Nov – 12 Dec In these weeks my lecture load will have decreased. The target
during these two weeks is to finish the construction of the compiler. Namely, I will
write the lowering for higher order functions and functions with cases.

This work package also involves the output of JVM assembly, but the last IR is to
be designed so that this task is trivial.

The deliverable for these two weeks is to have a working, end-to-end compiler.

6. 13 Dec – 26 Dec First optimisation passes will be written. In particular, I expect
to implement:

5

• A peephole pass. Peepholes will continue to be added throughout the project,
as deemed fit by the generated assembly.

• Function inlining.

This is the optimisation I expect to see the most performance gain based on
limited tests with Java

The deliverable for these weeks is to have both of these optimisations working. This
will be verified by inspecting code generation.

I expect that my primary goals will be met by this stage.

7. 27 Dec – 9 Jan I expect to implement:

• Elimination of tail recursion.

The concrete verification that these are working is to be done again by inspecting
code generation. These weeks are intentionally left light as break weeks and slack
weeks if needed.

8. 10 Jan – 23 Jan In these weeks I would like to implement one or more of my
optional extensions (whether it is one or more depends on which I select).

I will take some time in these weeks to write the progress report.

The deliverable is to see that the optimizations have been implemented (by looking
at generated code).

9. 24 Jan – 6 Feb In these weeks, I intend to implement another of my extensions.

These are also allocated as slack weeks should things from previous weeks slip or
should I decide that I need more data than I had previously managed to collect.

The deliverable here is to see that an extension has been implemented. (again to
be seen from the generated code).

10. 7 Feb – 20 Feb Gathering additional benchmarking data. This will involve writ-
ing benchmarks in addition to what was previously written. These benchmarks
will again be designed to have real world use cases, but will not be designed to
demonstrate the optimisations of my compiler.

I will also write and rehearse the presentation early in this work package.

I expect to be able to see elimination of tail recursion working (again, by inspecting
code generation) and have some benchmarking data for use in future weeks. These
are my deliverables for this period.

11. 21 Feb – 6 Mar The main deliverable here is to have a working draft of the final
dissertation.

12. 7 Mar – 20 Mar Iteration over dissertation (and revision).

13. 21 Mar – 3 Apr Continued iteration over dissertation (and revision).

14. 4 Apr – 17 Apr Mainly focusing on revision at this point, incorporating any
feedback received.

6

15. 18 Apr – 2 May Proof reading and then an early submission so as to concentrate
on examination revision.

7

	Introduction
	Preparation
	Source Language
	Target Language
	Selecting Optimisations
	Benchmarking
	Compilation Pipeline
	User Interaction
	Development Strategy
	Testability
	Selecting Tools
	Starting Point

	Implementation
	Compiler Implementation Details
	Verification
	Designing TIR
	Datatype Lifting
	Outlining
	Lambda Lifting
	Let Elimination
	Pattern Match Elimination
	Variable Numbering

	Representing TIR with Bytecode
	Optimisation Implementation Details
	Tail-Call Elimination Pass
	Function Inlining
	Copy Propagation Pass
	Simplify Passes
	Dead Store Elimination Pass
	Peephole Pass
	Phase Ordering Problem

	Testsuite Implementation Details
	Benchmarking Implementation Details
	Standard Library Implementation Details
	Compilation Scripts Implementation Details
	Summary

	Evaluation
	Methodology
	Execution Time
	Compile Time
	Typechecker

	Code Size
	Additional Optimisations
	Summary

	Conclusion
	Further Work
	Summary

	Appendices
	Inlining Performance Profiling in Java
	Scala Garbage Collector

