
New Regular Expressions on Old Accelerators
Jackson Woodruff

University of Edinburgh
Edinburgh, Scotland

J.C.Woodruff@sms.ed.ac.uk

Michael F.P. O’Boyle
University of Edinburgh

Edinburgh, Scotland
mob@inf.ed.ac.uk

Regular expressions (regexes) play a key role in a wide
range of systems including network intrusion detection. FPGA
accelerators can provide power savings over CPUs by exploit-
ing MISD parallelism inherent in regex processing. However,
FPGA solutions are brittle, requiring hours to reprogram
when rulesets change, while real-world security threats evolve
rapidly.

We present RXPSC (Regular eXPression Structural Com-
piler), a compiler designed to compile new regexes to existing
regex accelerators. We use input-stream translation to enable
fixed FPGA accelerators to accelerate new patterns with min-
imal overhead and little update delay. Compared to a solution
where new regexes run on a CPU, RXPSC reduces CPU load
by more than a factor of ten for 84% of unseen regexes in
ANMLZoo benchmarks.

Index Terms—regular expressions, accelerator, compiler

I. INTRODUCTION

Regex processing is critical in a wide range of fields, from
genome processing to network intrusion detection [1]. This
range of applications, and the applicability of the compu-
tational model to a MISD processor model, has driven the
development of a number of hardware accelerators. IP com-
panies such as Grovf [2] currently offer automata accelerators,
and Micron offers a physical automata processing board [3].
FPGAs are also able to take advantage of the parallelism
available in regex processors [4], offering an alternative to
high ASIC design costs, latencies, required expertise and
low design utilization [5]. In particular, the network intrusion
detection setting has seen significant support for reconfigurable
regex acceleration, from P4 programmable architectures [6] to
FPGA-based accelerators [7]. However, FPGA-based automata
accelerators face problems with the dynamic nature of network
intrusion detection rules. As Xu et al. [8] state, “FPGAs do
not support fast dynamic updates, so are not applicable in
network security applications where signature rules are altered
frequently”.

Existing work addressing pattern update times focuses either
on better utilizing FPGA toolchains [9] which still leaves
pattern update times orders of magnitude too long, or on in-
troducing architectures that make reconfigurability easier [10],
[11]. Of these architectures, generalized FPGA overlays such
as NAPOLY [11] reduce compile time drastically, but have far
less throughput and capacity than single-level reconfigurable

designs [4]. There have been attempts at fast reprogramma-
bility [10] but they lack compiler support, and only support
regex replacement rather than regex addition.

We present a methodology for supporting acceleration of
new regexes on existing accelerators. We provide a compiler,
RXPSC which supports dynamically injecting regexes. Our
methodology is independent of the implementation of the un-
derlying accelerator, and allows the new and old accelerator to
coexist with negligible latency and no throughput penalty. We
compare to an existing automatic compilation technique that
can be applied to this problem, prefix merging, as discussed
by Wadden et al. [1] and see that prefix merging is limited
by its requirements for complete equality between prefixes,
an assumption that often does not hold.

In our methodology, regexes are efficiently translated to
each other using stateless translators, which convert the input-
stream character-by-character to a new input-stream and pass
the new input stream into an existing accelerator. Compared
to a hybrid solution where new regexes are run on the CPU,
this translation can reduce the number of bytes that must
be checked on the CPU by more than a factor of ten in
84% of cases across ANMLZoo [1]. Stateless translation
allows regexes to share underlying accelerators regardless of
their implementation and provides easy scalability for higher
performance. We expect our work to be particularly useful
in cases where not all regexes must be run over every input
— for example anti-virus programs with different rules for
different file types, protein-search operations with different
proteins or network intrusion detection systems where different
rules apply to different protocols/ports. This allows us to find
accelerators that would not otherwise be in use to reuse for
new patterns. RXPSC finds accelerators for 97% of ANMLZoo
patterns among the regex family benchmarks, Brill, ClamAV,
Dotstar, PowerEN, Protomata and Snort. We examine the
network intrusion detection use case in more detail, where
RXPSC finds accelerators for 96% of patterns in the registered
Snort rules.

We make the following contributions:
• A model for accelerator re-use that is scalable and inde-

pendent of the underlying accelerator implementation.
• RXPSC, a compiler for finding structural similarities

between regexes and generating stateless translators.
Our model is capable of reducing the CPU load of unseen
accelerators by more than a factor of ten in 84% of cases
across the ANMLZoo benchmark suite.

CPU

Regular Expression Accelerator

In
p
u
t

D
a
ta

 (
e
.g

.
P
a
c
k
e
ts

)

M
a
tc

h
 In

d
e
x
e
s

...F
IF

O

F
IF

O

...

Regex

RXPSC

Con�guration

 Updates

Regex

Regex
F
IF

O

...

Regex

Regex

Regex

F
IF

O

...

Regex

Regex

Regex

F
IF

O

...

Regex

Regex

Regex...

T
T

T

T
T

T

T
T

T

T
T

T

Fig. 1. Data is read into the accelerator, which sends match indexes to the
CPU. Translators (T) are used to change the behavior of accelerators to enable
acceleration of new regexes.

PASS\s*\n PASS\s[ˆ\n]*%[ˆ\n]*% PASS\s[ˆ\n]50
TABLE I

THREE PREFIX MERGABLE PATTERNS FROM THE SNORT RULESET.

II. INPUT STREAM TRANSLATION

The model we present for translating input streams is
stateless-translation. We use a character lookup that applied to
every input character. We present this model because it is easy
to implement as a lookup on FPGA, easy to parallelize for
higher throughput as there are no stateful dependencies, easy
to enable or disable in a fine-grained manner and independent
of the underlying accelerator implementation.

A diagram of how this integrates into a Grapefruit [4]
accelerator is shown in Figure 1. Input data is streamed into
the accelerator, which distributes it between multiple regexes.
These report to the CPU when they match. Our translator
sits between the regex and the input, and can optionally be
enabled for certain types of input. It behaves as a lookup
table, translating characters byte-by-byte. The CPU can also
read input data, and may have to for further processing of
matches. The CPU can be used to inject new patterns on to
the accelerator by updating the stateless translators without a
full reconfiguration.

A. Motivating Example

Regexes are matching rules used in numerous domains,
from network intrusion detection (indicating malicious packets
based on text matches) to bioinformatics (indicating genome
sequences).

Input Output Input Output Input Output
F U : ‘ ’ \n \r
r S \r ‘ ’ ‘ ’ %
o E ; ’ < \r
m R , ’ " \r

TABLE II
A STATELESS TRANSLATION TABLE TO CONVERT FROM

From: +[ˆ\r\n"<]*[;’,] TO USER *[ˆ\r]+%’.

Input Output Input Output Input Output
c a d b * x

Fig. 2. A stateless translator converting cd*to ab*. x is an arbitrarily
selected character to avoid false-positives.

ab*

In
p
u
t

Te
x
t

fcddeefa

Tr
a
n
s
la

to
r

xabbxxxx

M
a
tc

h
e
s

xabbxxxx

Accelerator

Match region

Fig. 3. A stateless translator acting on an input stream.

Regexes include character ranges ([a-z]), optional sub-
strings (a?) and repeated substrings ((ab)*). As an example,
the regex ab* matches the strings a, ab, abb,

Regexes are usually implemented using either determinis-
tic (DFAs) or non-deterministic automata (NFAs). Grapefruit
implements regexes using NFAs, which take advantage of the
parallelism available on an FPGA.

1) Prefix Merging: Prefix merging is a well-known au-
tomata compression technique [1]. As an example, suppose we
have accelerators for the regexes abx and aby. These share a
common prefix of ab, which can be extracted at compile time
and accelerated. If we add a regex, abz, this common prefix
can be used to reduce the computational load of accelerating
this third regex without recompiling the FPGA accelerator. A
real world example from the Snort rules is shown in Table I.

2) Limits of Prefix Merging: However, prefix merging fails
in many cases. Suppose we have an accelerator for the regex
ab*, and we wish to accelerate the regex cd*. Despite
significant similarity between the regexes, prefix merging fails
to provide even a partial accelerator, as the two regexes do not
share a prefix.

Stateless translation can generate the character lookup table
shown in Figure 2. If we translate the input stream through the
stateless translation table, a match for the regex ab* means
that the (pre-translation) input stream contained the string
cd*. Figure 3 shows this translator acting on an input stream.
We will explore how our algorithm generates this translation
as a running example in Section III.

In general, regexes are more complex, and deriving transla-
tors is challenging as stateless translators must satisfy larger
sets of constraints. Table II shows one such real-world example
of a translator for the Snort rules, again in a case where prefix
matching would fail.

III. COMPILATION OVERVIEW

RXPSC takes as input a set of regexes that already have
accelerators implementations, and a number of new regexes to
be accelerated. It then translates each new regex to a different
accelerator, enabling acceleration of the new regex.

A. Groups

RXPSC exploits groupings of regexes that do not have to
evaluated at the same time. Groups are application-dependent;
for example, network intrusion detection provides groups in
the form of protocol, port numbers and IP address ranges.
These can be distinguished rapidly in hardware [12], to

activate a group of accelerators. RXPSC takes advantage of
the otherwise unutilized accelerators.

B. Accelerator Assignment

When adding a regex, RXPSC will calculate the similarity
of that regex to all of the existing accelerators. Once RXPSC
has all the potential translations, it picks the best, operating in
a greedy manner. Accelerators may not accelerate the whole
regex, so RXPSC identifies accelerators that can accelerate the
remainder. This set of accelerators, and corresponding stateless
translators, is the output of RXPSC. The core technique of
determining similarity is described in the next section.

C. Over Approximation

To find accelerators for a wider range of regexes, RXPSC
can find over approximations, meaning that they always accept
strings that the original regex would have accepted, but they
also accept additional strings. These additional matches can
be filtered on the CPU. To distinguish between accelerators
that over approximate by various degrees internally, we use an
over approximation factor, which is the fraction of edges in the
accelerator that are spuriously activated by input symbols. This
is a simplification of more complex error representations [13],
but allows RXPSC to make informed decisions about which
accelerators are likely to be useful. The result of this over
approximation is discussed in terms of the extra bytes it
involves sending to the CPU in Section V.

IV. REGULAR EXPRESSION SIMILARITY

RXPSC addresses structural similarity and symbol simi-
larity individually. Computing structural similarity generates
pairs of corresponding terms (e.g. Figure IV-A2). Symbol
similarity unifies these assignments into a stateless translator
or rejects the compilation.

A. Structural Similarity

Structural similarity matches a new regex to parts of existing
accelerators, while abstracting away any symbol. Symbol
similarity (Section IV-B) subsequently determines whether a
translator is feasible once symbols are taken into account.
We approach structural similarity by compiling regexes to
an intermediate language, the accepting path algebra, that
abstracts structure from each regex. We then use this algebra to
determine which accelerators can structurally support a regex.

1) Accepting Path Algebra: We propose the accepting path
algebra, which can be created from regexes. The accepting
path algebra enables comparison between different regexes
to determine which regexes are similar to each other. The
elements of the algebra are:
n ∈ {0, 1} This means n symbols are read from the input.
a This means there is an accept.
e Means that this branch of the regex continues no further.
x+ y Where x and y are accepting path algebra terms. This

means y follows x. It is not commutative.
We collapse long sums for readability (e.g. writing 1 +
1 + 1 as 3), but our algorithms work on unary digits.

x∗ Where x is an accepting path algebra term. This means
that there are loops, one represented by x.

{x0, . . . , xn} This means that there is a branch and each arm
of the branch is one element within the set. Each of the
xi are accepting path algebra terms.

2) Example: In practice, we generate the accepting path
algebra from NFAs. We will use regexes in these examples
for simplicity. Below, we show the accepting path algebras
for various simple regexes:

Regex Accepting Path Algebra
ab* 1 + (1) ∗+a+ e
cd* 1 + (1) ∗+a+ e

a(b|c)de 1 + {1, 1}+ 2 + a+ e
3) Determining Structural Support: We describe the algo-

rithm used to determine whether an accelerator can structurally
support a different regex. We use the notation x ≤ y (read as
y structurally supports x) and define the algorithm by cases
on the structure of the accepting path algebra. Algorithm 1
shows a simplified boolean version of this algorithm — our
implementation keeps track of which terms are related, and
which terms are disabled. Given two accepting path algebras A
and B, we apply this algorithm with a recursive walk through
the algebra structures.

Algorithm 1 Simplified structural support algorithm, defined
using terms in the accepting path algebra (Section IV-A1)

1: procedure A ≤ B
2: e ≤ x: if x 6= a+ ... return True . (trim)
3: a ≤ a+ x: return True . (dropadd)
4: 0 ≤ y∗: return True . (dropmul)
5: m ≤ n (m,n ∈ N) return m == n . (inteq)
6: a ≤ a: return True . (accepteq)
7: e ≤ e: return True . (endeq)
8: x∗ ≤ y∗: return x ≤ y . (muleq)
9: x0 + · · ·+ xn ≤ y0 + · · ·+ ym: return True if: .

(plus)
10: ∃i. with x0 + · · ·+ xi ≤ y0 + · · ·+ ym
11: Or, ∃.i with x0 + · · ·+ xn ≤ y0 + · · ·+ yi
12: Or, ∃
13: XGroup = [x0+· · ·+xi, xi+1+· · ·+xj , . . .]
14: YGroup = [y0+ · · ·+ya, ya+1+ · · · yb, . . .].
15: Such that: ∀m. XGroup[m] ≤ YGroup[m]
16: {x0, . . . , xn} ≤ {y0, . . . , ym}: return True if: . (set)
17: ∀xi.∃yj .xi ≤ yj
18: Otherwise: return False
19: end procedure

4) Example: Consider the regexes ab* and cd*. As we
saw above, these both have accepting path algebras 1 + (1) ∗
+a + e. That structural support exists here is clear since the
algebras are the same, and is shown in Figure 4. A non-trivial
example of structural support is shown in Figure 5, showing
that the regex h(i|jk|l)m* structurally supports the regex
a(b|c).

Structural support is a necessary, but not sufficient, con-
dition for the existence of a stateless translator. Finding an

1 + (1)* + a + e

1 + (1)* + a + e

a
c
c
e
p
te

q

e
n
d
e
q

in
te

q

in
te

q

plus
mul

Fig. 4. Rules from Algorithm 1 applied to show how the accepting path
algebra for ab* structurally supports the algebra for cd*.

1 + {1, 1} + 0 + a + e

1 + {1, 2, 1} + (1)* + a + e

a
c
c
e
p
te

q

e
n
d
e
q

d
ro

p
m

u
l

in
te

q

in
te

q

in
te

q

set
plus

Fig. 5. Rules from Algorithm 1 applied to show how the accepting path
algebra for h(i|jk|l)m* structurally supports the algebra for a(b|c).

accelerator that structurally supports a new regex shows that
acceleration is plausible; but to be useful, we must have
sufficient symbol set similarity.

B. Symbol Similarity

Symbol similarity receives, as input, pairs of symbol sets
(one virtual symbol set and one accelerator symbol set per
algebra term) and produces, as output, a stateless translation.
Symbol similarity operates in two steps: symbol completeness
then symbol correctness. Symbol completeness means our
translator does not miss any regexes, and symbol correctness
means our translator does not accept any patterns that should
not be accepted. These steps can fail, in which case we either
reject the translation, or accept it as an over approximation.

C. Terminology

Symbol Set A range of symbols, e.g. {a} or {[0-9]}.
Symbol Set Pairs The pairings produced by the structural

support algorithm, for example in Figure 4.
Virtual Symbols Symbols in the regex to accelerate.
Physical Symbols Symbols in the existing accelerator.
Disable Symbols Symbols that activate terms in the acceler-

ator that should not be activated. For example, the term
jk in Figure 5.

Algorithm 2 Algorithm for generating symbol complete trans-
lators.

1: procedure SYMBOLCOMPLETE(SymbolSetPairs)
2: ∀x. Translator(x) = U . Universal set
3: for (VirtSymbs, AccSymbs) in SymbolSetPairs do
4: for Each symbol in VirtSymbs, v do
5: Translator(v) = Translator(v)∩AccSymbs
6: end for
7: end for
8: end procedure

1) Symbol Complete Translator: Symbol completeness (Al-
gorithm 2) begins with the pairwise assignment of accepting
path algebra terms produced by the structural support algo-
rithm. It produces a translator that accepts all strings the added
regex accepts. The output of this step is passed to symbol-
correctness to produce a stateless translator.

Algorithm 3 Algorithm for generating correct translators from
a regex R to an accelerator A. Xc denotes the set compliment.

1: procedure SYMBOLCORRECT(CompleteTranslator,
ToDisable)

2: ∀x. ActiveSet(x) = {T | T is a term in A with x in
its symbol set}

3: ∀x. MustBeActive(x) = {T | T is a term in A paired
to T ′ in R where x is in the symbol set of T ′ }

4: for Each Symbol, x do
5: ApproxSymbs = Active(x)∩MustBeActive(x)c

6: Trans(x) = CompleteTrans ∩ ApproxSymbsc

7: end for
8: InactiveTerms = {x | ActiveSet(x) = ∅}
9: ToDisable = ToDisable ∩ InactiveTerms

10: if ToDisable = ∅, fail.
11: if Translator(x) = ∅ for any x, fail
12: Select an arbitrary element from each Translator(x).
13: end procedure

2) Symbol-Correct Translation: Symbol-correctness (Al-
gorithm 3) begins with a symbol-complete translator. The
process for arriving at a symbol-correct translator ensures that
terms are not spuriously activated in the accelerator, which
would cause acceptance of strings that should be rejected. For
example, suppose we have the accelerator ab* and we wish to
accelerate the regex cd*. We ensure that a and b are translated
to characters that are neither a or b to avoid incorrectly
accepting strings such as ab, abb, We often omit or
partially execute the correctness phase of stateless translator
generation. This results in accelerators that over approximate
and leave some extra computation for the CPU. We discuss
this over approximation more in Section III-C.

V. EVALUATION

We examine RXPSC’s performance on the ANMLZoo [1]
benchmarks in the regex family: Brill, Snort, Protomata,
PowerEN, Dotstar and ClamAV. We also consider a network
intrusion detection setting.

A. Setup

Experiments are run by taking each benchmark set, and
removing a regexes. The remaining regexes are compiled. We
then add the new regex, by computing whether some prefix
of the new regex can be represented using the other regexes.
In each experiment, we generate simulators for each converted
regex and run the 1 MB ANMLZoo inputs into each simulator.
We compare these to the baseline (unmodified) accelerator
to compute the over approximation rate — the rate at which
the accelerator generates spurious accepts. Using the average

Br
ill

Cl
am

AV

Do
ts

ta
r

Po
we

rE
N

Pr
ot

om
at

a

Sn
or

t

ANMLZoo Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eg
ex

es
 A

cc
el

er
at

ab
le

RXPSC Prefix Merging

Fig. 6. Fraction of patterns that can run on the accelerators for the other
patterns in each benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of bytes that must be scanned on CPU

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
Of
 R
eg
ex
es

Brill
ClamAV

Dotstar
PowerEN

Protomata
Snort

Fig. 7. Fraction of bytes executed on the CPU using RXPSC.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of bytes that must be scanned on CPU

0.0

0.2

0.4

0.6

0.8

1.0

CD
F
Of
 R
eg
ex
es

Brill
ClamAV

Dotstar
PowerEN

Protomata
Snort

Fig. 8. Fraction of bytes executed on the CPU using prefix merging.

accepting length as a proxy for the number of bytes that the
CPU must then check, we can compute the fraction reduction
in bytes that the CPU must scan. We run these experiments
for every regex within each benchmark (˜2,500 regexes each).

RXPSC is particularly useful within a network intrusion
detection setting as it provides easy-to-form groups of regexes
and requires pattern updates without excessive compile time.
We consider Snort [14], a set of network intrusion detection
rules from Cisco and look at two different rule sets, the
unregistered rule set (1,497 regexes) We split rules by their
protocol, port numbers and IP addresses. This results in a
number of different groups of regexes, that can each be run on
different packets and creates a less general, but more realistic,
situation than that used for ANMLZoo.

For the Snort experiment, we remove one class of regexes
from the set of all regexes. A class of regexes is some set
of regexes that must be run for a particular protocol/port/IP
address combination. We then compile each of these regexes
to the accelerators presented by the remaining regexes (of
different classes).

B. Results

Figure 6 shows what fraction of unseen regexes RXPSC
and prefix merging can find any accelerator for. We can see
that RXPSC finds accelerators for 97% of supplied regexes on
average, performing particularly well on ClamAV, Dotstar and
PowerEN in this metric, where RXPSC finds accelerators for
more than 99% of regexes. In contrast, prefix merging only
finds accelerators for 43% of regexes.

As discussed above, finding an accelerator does not tell the
full story, as for some regexes RXPSC only achieves partial
offload from the CPU. We show the number of additional bytes
that must be scanned on a CPU as a fraction of the total data
in Figure 7 for RXPSC, and Figure 8 for prefix merging.

We see that for some benchmarks, PowerEN, Dotstar, Snort,
and Brill, RXPSC is able to almost entirely remove the need
for the CPU with new patterns. For others, ClamAV and
Protomata, we see that the generated accelerators are only
able to reduce the CPU in a smaller fraction of cases, reducing
CPU by more than a factor of ten in 51% and 72% of cases
respectively. We can also see that RXPSC outperforms prefix
merging by a significant margin on all benchmarks, where only
Brill and Dotstar can be run without complete reliance on the
CPU for more than 50% of regexes.

RXPSC generates assignments reducing the quantity of data
that must be scanned by the CPU by more than a factor of
ten in 84% of cases, performing particularly well on Dotstar,
PowerEN and Snort where RXPSC achieves this benchmark
in 99.5%, 96% and 93% of cases respectively. Prefix merging
reaches this threshold for 85%, 9% and 32% respectively.

The differences between the accelerator generation graph
(Figure 6) and the bytes requiring CPU graph (Figure 7)
are down to two key features: first, we do not require an
entire regex match; and second, translators often over approx-
imate. For some benchmarks, such as ClamAV, regexes often
begin with large series of single-character symbol sets (e.g.

Unregistered Rules Registered Rules
Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 R

eg
ex

es
 A

cc
el

er
at

ab
le

 RXPSC Prefix Merging

Fig. 9. Fraction of regexes that can be supported by existing accelerators.

REAPR [9]
Optimized

REAPR [9] RXPSC
Prefix

Merging
Brill 21168 s 15864 s 1.8 s 0.2 s

ClamAV 17100 s 13020 s 0.9 s 0.1 s
Dotstar Unreported Unreported 0.5 s 0.1 s

PowerEN Unreported Unreported 0.7 s 0.1 s
Protomata 23388 s 17130 s 12.4 s 0.1 s

Snort 25020 s 25020 s 0.9 s 0.03 s

Fig. 10. Time required to add additional regexes. We compare to REAPR [15],
a prior version of Grapefruit, as numbers for Grapefruit are unreported.

\x00\x00\x00). RXPSC is capable of finding accelerator
matches for these, which under our own heuristics perform
well, but these do not distinguish test data significantly. Simi-
larly, for Protomata, a very reduced dictionary of 16 characters
is used, again resulting in poor choices of accelerator to use.
We expect both benchmarks could see improved performance
with more appropriate heuristics for their particularities.

1) Network Intrusion Detection: Figure 9 shows that 96%
of regexes can be accelerated using existing accelerators in the
registered rules and 93% of regexes can be accelerated in the
unregistered rules. The difference is down to the number of
rules — the larger set of rules provides more accelerators to
choose from. Prefix merging finds alternatives for only 49%
and 25% of each set of rules, again showing the benefit of
having more accelerators to choose from. In this real-world
situation where we must load a new pattern onto an accelerator
quickly, RXPSC does so in the vast majority of cases, reducing
the volume of data the CPU must process, and freeing CPU
cycles.

C. Compile Time

RXPSC is capable of compiling new regexes to existing
accelerators in a number of seconds. In this experiment, we
explore compile times for additional regexes using RXPSC,
and compare them to the reported compile times for the
ANMLZoo benchmark suite [9] on REAPR [15] (a prior
version of Grapefruit), showing both the default compile

times and compile times improved with compilation toolchain
optimizations. Figure 10. RXPSC’s compile times that are
almost all a factor of 10,000 less than those reported for
REAPR.

VI. CONCLUSION

We present RXPSC, a regex compilation tool capable of
compiling new regexes to existing accelerators. RXPSC finds
structural similarity between regexes and generates stateless
translators that allow in-place accelerator updates without
recompiling an FPGA accelerator. We find that we can reduce
CPU workload by more than a factor of ten for 84% of
unseen regexes across the ANMLZoo benchmarks, outper-
forming prefix merging, which only reaches this benchmark
for 34% of unseen regexes in ANMLZoo. We demonstrate
a use case in network intrusion detection, where new rules
must be implemented quickly in response to new threats, and
again show that RXPSC achieves significant improvement over
prefix merging.

REFERENCES

[1] J. Wadden, V. Dang, N. Brunelle, T. Tracy II, D. Guo, E. Sadredini,
K. Wang, C. Bo, G. Robins, M. Stan, and K. Skadron, “ANMLZoo:
A benchmark suite for exploring bottlenecks in automata processing
engines and architectures,” IISWC, 2016.

[2] Grovf, “GRegeX.” https://grovf.com/products/gregex.
[3] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,

“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE PDS, vol. 25, pp. 3088–3098, 12 2014.

[4] R. Rahimi, E. Sadredini, M. Stan, and K. Skadron, “Grapefruit: An open-
source, full-stack, and customizable automata processing on FPGAs,”
FCCM, 2020.

[5] T. Nowatzki, V. Gangadhar, K. Sankaralingam, and G. Wright, “Domain
specialization is generally unnecessary for accelerators,” IEEE Micro,
vol. 37, pp. 40–50, 2017.

[6] T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, and
R. Soulé, “Fast string searching on PISA,” in SOSR, ACM, 4 2019.

[7] M. Ceska, V. Havlena, L. Holı́k, J. Korenek, O. Lengál, D. Matousek,
J. Matousek, J. Semric, and T. Vojnar, “Deep packet inspection in FPGAs
via approximate nondeterministic automata,” CoRR, 2019.

[8] C. Xu, S. Chen, J. Su, S. M. Yiu, and L. C. K. Hui, “A survey on
regular expression matching for deep packet inspection: Applications,
algorithms, and hardware platforms,” IEEE Communications Surveys &
Tutorials, vol. 18, pp. 2991–3029, 2016.

[9] C. Bo, Automata Processing: from Application Acceleration to Hardware
Design. PhD thesis, University of Virginia, 2019. Chapter 6.

[10] C. Bo, V. Dang, T. Xie, J. Wadden, M. Stan, and K. Skadron, “Au-
tomata processing in reconfigurable architectures,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 12, pp. 1–25, 6 2019.

[11] R. Karakchi, C. Daniels, and J. Bakos, “An overlay architecture for
pattern matching,” in ASAP, IEEE, 7 2019.

[12] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing on a
single FPGA,” in ANCS, IEEE, 2011.

[13] A. H. N. Sabet, J. Qiu, Z. Zhao, and S. Krishnamoorthy, “Reliability
analysis for unreliable FSM computations,” ACM Transactions on Ar-
chitecture and Code Optimization, vol. 17, pp. 1–23, 5 2020.

[14] The Snort Project, “SNORT users manual: 2.9.16.” http:
//manual-snort-org.s3-website-us-east-1.amazonaws.com/snort manual.
html, 2020.

[15] T. Xie, V. Dang, J. Wadden, K. Skadron, and M. Stan, “REAPR:
Reconfigurable engine for automata processing,” in FPL, IEEE, 9 2017.

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/snort_manual.html
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/snort_manual.html
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/snort_manual.html

	Introduction
	Input Stream Translation
	Motivating Example
	Prefix Merging
	Limits of Prefix Merging

	Compilation Overview
	Groups
	Accelerator Assignment
	Over Approximation

	Regular Expression Similarity
	Structural Similarity
	Accepting Path Algebra
	Example
	Determining Structural Support
	Example

	Symbol Similarity
	Terminology
	Symbol Complete Translator
	Symbol-Correct Translation

	Evaluation
	Setup
	Results
	Network Intrusion Detection

	Compile Time

	Conclusion
	References

