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Abstract—CGRAs promise the performance benefits of ASICs
while retaining the flexibility of FPGAs. Heterogeneous CGRAs
present a key design-point that is closer to the performance
on an ASIC by eliminating unnecessary hardware components.
For any particular set of applications, exploring the design-
space of CGRAs is a complex task: requiring time-consuming
estimates of power consumption, area use, and performance.
This is costly for a single architecture, but when we wish to
explore multiple sets of architectural parameters for a CGRA,
the cost balloons — many architectures must be evaluated for
each possible CGRA specification. We introduce RL-CGRA,
which uses reinforcement learning to enable fast placements. RL-
CGRA enables fast exploration of a wide design-space of CGRA
parameters by eliminating the cost of simulated annealing for
each architecture.

Index Terms—regular expressions, accelerator, compiler

I. INTRODUCTION

With the end of Denard scaling, extracting more perfor-
mance requires overcoming the accelerator wall [1]. This
wall, and the projections for more dark silicon [2], present
the perfect window for specialized hardware accelerators [3].
However, over-specialization of hardware accelerators limits
their use-cases [4], [5] which is costly [6], [7]. ASICs are ex-
tremely high performance [1], but present significant flexibility
challenges [8], [9].

Domain-specific Coarse-Grained Reconfigurable Archi-
tectuers (CGRAs) promise to provide near-ASIC perfor-
mance [10] and resolve flexibility challenges [11]. The greatest
performance comes from the most specialized designs [12],
forming a critical part of the most low-power accelerators [5],
[13]. Hundreds of domain-specific CGRAs [11] have been
designed for usecases ranging from low-power [5], [14] to
high-performance [15].

Fleets of domain-specific CGRAs have the potential to
vastly increase applicability of FPGAs in the cloud [16].
However, the exploration of the CGRA design-space is com-
plex, time-consuming, and limited [17]. Work to enable high-
level CGRA-design exploration has focused on fast estima-
tion of clock frequencies [18], energy, and area [19]. How-
ever, generating performant architectures from the high-level
specifications, a critical aspect for finding high-performance
architectures [17], is still a slow process; designing PEs
involves complex tradeoffs [20] and simulated annealers used
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by existing frameworks [16], [21] are slow, limiting high-level
parameter exploration to tens of designs [12] or out-of-context
analyses for single PEs [20]. Soling this problem requires fast
evaluation of potential CGRA architectures.

We propose RL-CGRA, a placer for design-space explo-
ration of heterogeneous CGRAs. RL-CGRA uses experience
from placing previous designs to enable it to place new designs
quickly, out-preforming simulated annealing-based techniques
that are not able to learn from past experience, and enabling
far greater sample efficiency. Using learned experience allows
RL-CGRA to efficiently explore large spaces of architectural
parameters.

Although existing equation-based techniques [12] can be
used to give near-optimal designs with a single set of ap-
plications, they do not work when the compiler can rewrite
the application for the hardware at-hand. When the compiler
is aware of the heterogeneity of the underlying hardware,
and selects different instructions depending on the available
hardware, these simple equations are no longer applicable, as
they change depending on what hardware is provisioned. RL-
CGRA enables design-space exploration that uses feedback
from the compiler to determine optimal placements.

Enabling this design-space exploration for CGRAs critically
raises the level of abstraction that can be used to design
CGRAs. Using RL-CGRA, architects can ignore the challeng-
ing decisions around picking which PEs they wish to include
in their designs, and rely on distribution-based generation of
plausible architectures and quantitative selection of the most
suitable architecture for the task.

In summary, this paper introduces:
• RL-CGRA, the first CGRA placement tool designed to

enable large-scale design-space exploration.
• The first RL-placement strategy that incorporates

application-performance feedback.

II. BACKGROUND

Exploring a wide range of architectural parameters on
CGRAs has been a key limiter in CGRA design, accounting
for a large fraction of the design time in such architectures.

A. Heterogeneous CGRA Design Pattern

Heterogeneous CGRAs are designed to accelerate sets of
loops in applications. Their fast reconfiguration time, orders
of magnitude faster than FPGAs [22], gives them a significant
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Fig. 1. CGRA-as-overlay designflow.

advantage over FPGA-based systems which cannot context-
switch at the same rate as CPUs [23].

A typcial CGRA design sequence invovles two steps: gener-
ating the CGRA design, which can take days due to the cost of
synthesis [24], and reconfiguring for each application, which
takes ns. Figure 1 shows this sequence.

B. The Limits of CGRA Design

High-level CGRA-design is bottlenecked by several key
stages. Generally, the set of operations that a CGRA can sup-
port is derived from the applications it is intended to support.
However, with hardware-aware compilers, simple estimates
of the hardware do not suffice as the compiler changes it’s
behaviour based on the hardware available. Figure 2 shows an
example of this, where we wish to design a CGRA to support
two different functions, 3 * x + y and x << 1. A naive
equation-based hardware-design would create the CGRA in
figure (a), but the CGRA in (b) will be more efficient for
these functions.

C. The Promise of Design-Space Exploration

Design-space exploration can be used to solve this problem
by exploring a large space of combinations of possible de-
signs. The limits of this design-space exploration come in the
placement step of operations on the CGRA.

D. Addressing the Challenges of Placement with Reinforce-
ment Learning

To evaluate possible CGRAs with different operations, we
must place the operations on the CGRA. However, placing
operations on a CGRA efficiently typically uses simulated
annealing [25] are slow, and do not learn from previous
failures. Further, CGRA compilations are slow — meaning

for (int i = 0; i < n; i ++) 

    x[i] = x[i] * 3;

for (int i = 0; i < n; i ++)

    x[i] = x[i] << 1;
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Fig. 2. An example where design-space exploration produces a more optimal
CGRA than simple equations for the operations on a CGRA.

that running many design-space explorations takes signifi-
cantly longer than would otherwise be required. By leveraging
reinforcement learning, we can effectively learn to efficiently
generate placements for generic architectural parameters.

1) Simulated Annealing Approach: An Overview: In sim-
ulated annealing, placements are randomly initialized. The
simulated annealer makes random changes to the architecture,
re-evaluating the quality of the new placement with these
changes — if the changes not too detrimental, they are kept.
To determine whether changes are too detrimental, a parameter
called the temperature is used. The temperature dictates how
big of a local minimum the algorithm can overcome. With each
iteration, the temperature is reduced, and when the placement
stops improving, the simulated annealer terminates.

This process produces good results, but must start from
scratch every time.

III. REINFORCEMENT LEARNING PLACEMENT

We use a placement strategy based on circuit placement
techniques [26], where we ask the agent to place different
operations on the CGRA. Compared to traditional circuit
placement strategies [27], CGRAs offer an opportunity to use
more meaningful rewards: while traditional circuit placement
strategies typically rely on write-length as reward to make
evaluation fast, applications can be benchmarked quickly using
a CGRA design. Further, placing operations on a CGRA is
more closely tied to the applications that must run on that
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Fig. 3. Workflow using RL-CGRA to enable design-space exploration.
The top half of this diagram shows a traditional simulated-annealing-based
placement strategy. The bottom half of this diagram shows how RL-CGRA
enables exploration of a large heterogeneous design-space.

CGRA, and the parallelism (or not) inherent in those — rather
than on the wire lengths.

We instead design an agent that uses application perfor-
mance as a feedback mechanism. For a single architecture,
we do the following:

1) Produce an architecture using RL-CGRA.
2) Evaluate that architecture using the OpenCGRA compiler

to determine how good (or not) it was.
This flow is shown in Figure 3.

IV. RL-CGRA

RL-CGRA places operations with a CGRA-like grid. To
enable efficient design-space exploration, RL-CGRA uses rein-
forcement learning to learn where operations should be placed.

A. Environment Design

We ask out agent to learn placement strategies for individual
operations on a CGRA. These placement strategies are learned
for a particular set of applications, but are independent of the
architecture parameters.

For each available operation, we generate a map of proba-
bilities for that is used to place each operation. This agent is
shown in figure 4. We invoke the agent for each operator that
should be provided in the hardware.

1) Action Space: For an MxN CGRA, the action-space of
RL-CGRA is MxN placement candidates. Each action identi-
fies a placement location on the CGRA. We use action masking
to reduce the action-space by avoiding invalid placements (e.g.
where the operation in question has already been placed).

2) Observation Space: The observation-space uses the
CGRA compiler to provide feedback on the architectural alter-
natives it presents. For each candidate-generated architecture,
we run the OpenCGRA compiler [21]. This allows us to com-
pute the performance (taken through the initialization-interval)
of each loop on the candidate accelerator architecture. The
observation is computed from this as the mean performance
of each loop on the CGRA.

3) Rewards: For the reward, we use the average initializa-
tion interval of each loop — this represents an accurate the
performance characteristics of each loop on each architecture.

B. Agent Design

RL-CGRA uses a MLP, with two hidden layers with 256
elements, trained using PPO with γ = 1.0 and lr = 0.001.
The choice of γ = 1.0 reflects the stateless nature of the
problem, where each step is equally likely to contribute to
the final reward. Similarly, we have used the highest learning
rate for which we found RL-CGRA exhibited stability in
order to minimize the number of training steps required before
feasibility.

C. Training Strategy

During training, we ask RL-CGRA to generate placements
for many architectures. We evaluate those placements on
their high-level performance characteristics of the applications
running on the CGRA.

This, in addition to the resources required for the placement
selected, is used to enable design-space exploration.

The steps taken by RL-CGRA are as follows:
1) While Training:

a) Generate a candidate within the design-space that
should be evaluated.

b) Use RL-CGRA to place that candidate
c) Evaluate that architecture using OpenCGRA.
d) Store training data, every 100 iterations, update the RL

model.
This training strategy uses the randomness in the RL model

to explore the space of placements.

D. Exploration-Exploitation Tradeoff

Critically, it is easy to determine a baseline using a simu-
lated annealer for a single architecture — we can easily tell
whether RL-CGRA requires more training. However, as we
will see, pathological cases exist, where the training continues
for a long period of time, but does not produce outputs
equalling the performance of a simulated annealer. In these
cases, we propose a secondary termination methodology, by
terminating training when enough epochs have been trained
over.

In this work, we use the break-even point with the simulated
annealer, and 100 epochs as tradeoff points, and 100 epochs
represents a significant amount of training time.

E. Simulated Annealer Baseline

We write a simulated annealer to address the same problem.
This is the technique employed by existing CGRA design-
space exploration techniques. The simulated annealer is writ-
ten as follows. For a typical architecture, it requires 100
evaluations to termiante.

1) Produce a random initial placement
2) While the architecture has improved recently:

a) Randomly swap two operations
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Fig. 4. The structure of the RL-CGRA Agent. We use the agent to place each operation in the set of available operations, and from the constructed CGRA
can determine a reward to train the agent with.

b) Evaluate the performance of this architecture to see if
it has improved

Simulated annealing can be used to generate CGRA designs.
As input, it requires a single set of PE allocations, prohibiting
design-space exploration on this scale due to the costs of
running a single simulated annealer.

1) The REVAMP Equations: Using a simulated annealer
requires a very small set of architectures to explore. The state
of the art for choosing which architectures should be explored
is given in REVAMP [12], a set of of equations that can
be used to give an optimal CGRA architecture for a set of
applications. For some operation c that occupies a fraction f
of the operations within the applications to be accelerated, they
use the equation:

Nc

N
≈ f

Where Nc is the number of PEs supporting operation c, and
N is the total number of PEs. These equations can be used
as inputs to a simulated annealer — we will evaluate these in
section VI

V. DESIGN-SPACE EXPLORATION

RL-CGRA enables architectural exploration. In contrast
to traditional frameworks, which generate architectures from
high-level descriptions of the ALUs that should be used, RL-
CGRA enables exploration of these architecture parameter
efficiently.

A. Distribution-Based Generation

For any given set of loops we wish to accelerate on a CGRA,
A, there is some minimum set of operations O which must be
supported to actually run any of the applications.

1) Exponential Distribution: The exponential distribution
is characterized by a parameter λ, which controls the mean
and variance. The probability density function is given by

f(x) = 1− e−λxx ≥ 0

Given a target number of operations, we can pick λ so that
the mean (given by 1/λ) results in architectures with right
scale of resource usage.



Benchmark Suite Category
LivermoreC Scientific Benchmark Suite

DarkNet Machine Learning Library
freeimage Image Processing Library

ffmpeg Image Processing Library
BZip2 Compression Program

TABLE I
BENCHMARKS ARE 10 LOOPS RANDOMLY SELECTED FROM THESE

PROGRAMS AND LIBRARIES.

2) Manual Selection: We use distributions to lower the load
on the CGRA-designer, as automated parameter selection is
particularly load-reducing. However, RL-CGRA can just as
easily support a human-generated list of architectures. The key
here is that RL-CGRA does not have to be trained blind —
during training it can see all the architectures it will need to
be evaluated on.

VI. EVALUATION

We evaluate the ability of RL-CGRA to learn relevant
patters for design-placement on CGRAs. We explore the
quality of these placements compared to those generated by
simulated annealing approaches, and we explore the number
of compiler evaluations required to achieve these placements.

A. Setup

We construct CGRAs for five sets of example loops, taken
from the benchmark suites shown in table I. This style of
library-function acceleration suits CGRAs well, as they can be
designed for a set of libraries that are relevant to a program,
and than quickly reconfigured to support each loop in question.

1) Training Setup: We use a learning rate of 0.005, and an
episode size of 150 architectures. We use RLlib to distribute
the training across a single machine. The training is bottle-
necked by the CPU time required to obtain samples, so was
run on an 80-core machine without using a GPU.

B. Comparison to Simulated Annealing: Quality of Place-
ments

We demonstrate that RL-CGRA generates high-quality
placements, of comparable quality to simulated annealing
placements. Figure 5 shows the training curves for each of
the benchmarks. We can see that over 100 epochs, all but one
of the benchmarks achieves within 10% the performance of the
simulated annealer placements, using a single-shot placement.

We can also see that in the case of two of the benchmarks
(DarkNet and LivermoreC), RL-CGRA achieves better perfor-
mance than the simulated annealing placement.

C. Comparison to Simulated Annealing: Exploration Time

The key advantage of RL-CGRA is that it enables design-
space exploration for sets of applications without costly re-
evaluation using a simulated annealer over-and-over again.
This section explores two key aspects of this: the training
curves for RL-CGRA that show how quickly it is able to
learn placements (section VI-C1) and the required size of
design-spaces that are to be explored to take advantage of
this (section VI-C2).
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Fig. 5. Training curves for each benchmark. For each benchmark, we show
the training curve of RL-CGRA and the results of a simulated annealer
on the architecture generated using the REVAMP equations. Performance is
measured relative to the performance of the baseline simulated annealer.

1) Training Curves for RL-CGRA: As discussed in sec-
tion IV-D, we use the training curve from RL-CGRA to
determine where to stop exploring and start exploiting our
model for fast placements.

Where performance plateaus is dependent on several factors,
including the applications we wish to map in-particular. Most
critically, it is related to the size of the action space (size of
the CGRA) and the size of the observation space (number of
operations). Figure 5 shows this.

2) Time Taken to Explore Design Spaces: In this section,
we analyse the time taken by RL-CGRA to explore vari-
ous design spaces. RL-CGRA is most useful for large-scale
design-space explorations, where the costs of running many
simulated annealers would be prohibitive. Table II shows this
— comparing the number of evaluations in the simulated
annealer and to train RL-CGRA. From this, we can see that for
LivermoreC and DarkNet, RL-CGRA learned the environment
effectively — enabling efficient design-space explorations with
little overhead.

In the cases of FreeImage and Bzip2, RL-CGRA was effi-
cient, learning nearly enough information to reach the standard
of simulated annealing placement. In these cases, adjustments
to the termination conditions could yield less optimal, but more
efficient agents.

In the case of BZip2, RL-CGRA fails to learn an effective
placement strategy. The lack of progress in this case suggests
that RL-CGRA is not a good tool to use to enable a design-
space exploration of the BZip2 benchmark.

VII. RELATED WORK

A huge number of CGRA design frameworks have been
developed [12], [16], [21], [24], [28]–[32]. These frameworks
provide (to varying degrees) the required infrastructure around
CGRA design, taking applications and producing verilog and
compilers for the generated architectures.



Benchmark Number of Evaluations Simulated Annealer Number of Evaluations RL-CGRA
LivermoreC 3500 35
FreeImage 15,000 1500
FFMpeg 15,000 1500
DarkNet 450 5
BZip2 15,000 1500

TABLE II
NUMBER OF EVALUATIONS REQUIRED BY RL-CGRA COMPARED TO SIMULATED ANNEALING FOR VARIOUS SIZES OF INPUTS, AND SIZE OF DSE

REQUIRED TO BREAK-EVEN COMPARED TO SIMULATED ANNEALING APPROACHES, WHICH TAKE 100 EVALUATIONS ON AVERAGE.

A. Hetergeneous CGRAs

Heterogeneous CGRAs are common in a wide range of ap-
plications: neural networks [33], [34], scientific computing [5],
[35], and ultra-low power computing [13].

A number of studes have explored PE design: all from the
perspective of a single PE [20]. Various projects emply PE
heterogeneity but do not explore how best to obtain it [5],
[13].

Tools such as Radish [36] explore the use of design-
space exploration algorithms for CGRA generation.
Melchert et al. [20] use compiler-generated repeated
sub-graphs to enable PE DSE.

VIII. CONCLUSION

RL-CGRA presents the first higher-level CGRA design
framework enabling the exploration of large CGRA design-
spaces. RL-CGRA uses reinforcement learning to enable the
operation-placement phase of CGRA design to happen quickly
and efficiently for large-scale design-space explorations in
CGRA design.

RL-CGRA is able to integrate application-performance met-
rics into its model, enabling it to quickly find effective place-
ments by learning from previous placements using metrics that
are directly relevant to the end placement.
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